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Origin and purpose of these notes

These notes originally began as a way for me to organize all the material I needed to
know for my comprehensive exam into one place. The process of making it was a good way
to study and locate parts of the material I needed to study better, and once made it served
as a useful reference.

Now, my goal is that they will be useful to other people as a source of exposition and a
way to learn. To that end, I have tried to add commentary and background where it was
previously left out. However, my goal is not to be thorough in every detail. I have often
left out proofs where my primary sources have one, especially if I think the proof is not that
interesting or necesary to understand. When a proof is omitted, I refer to another source if
I know of one.

My goal is never to be concise or terse. While it is admirable to avoid being wordy,
too often mathematical texts swing far the other way and leave out too many details or
explanations. At the risk of being wordy or repetitive, I try to be as explicit and verbose
as possible in any details I deem important. It is less frustrating for a reader to skip over
material they already understand than to spend hours of time trying to work through an
�exercise for the reader� for every example.

Another goal is that these notes be thoroughly internally cross-referenced. Since LaTex
so conveniently allows me to link and reference other parts of the document, I take advantage
of this wherever possible.

Note on the author: I am a graduate student at Michigan State University. I take sole
responsibility for any errors in this material. If you have questions or corrections, feel free
to contact me by email at ruiterj2@msu.edu.

Overview of content

These notes serve primarily as an introduction to group cohomology, and then one of the
main applications, which is to the Brauer group of a �eld. The early material on homological
algebra and galois theory for in�nite extensions is just background, and could reasonably be
skipped or skimmed and looked up later as needed.

The primary source for most of the group cohomology material is Shari�'s notes [15]. If
the reader really just wants to learn group cohomology, that is also a good way to learn,
possibly better than reading these notes. The primary source for material on Brauer groups
is Rapinchuk's notes [12], and the main source for algebraic K-theory is Milnor's book [10].
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Chapter 1

Some homological algebra and category

theory

In this section, we cover various background material for the more category-theoretic aspects
of group cohomology. The main tools developed here to be used for group cohomology are
the snake lemma (Proposition 1.1.4), and the long exact sequence on homology induced by
a short exact sequence of chain complexes (Proposition 1.3.1).

We do not give full background on abelian categories, or derived functors, or even just
the Ext functor. Weibel [?] is the standard source for this sort of thing, or see Dummit
and Foote [3] for a less category-theoretic approach to de�ning Ext. We do freely use the
language of abelian categories on occasion, but also attempt to give thorough element-wise
arguments when possible.

1.1 Snake lemma

We begin with a very pedestrian lemma about kernels and cokernels.

Lemma 1.1.1. Let R be a ring, and suppose we have a commutative square of R-modules

A B

A′ B′

f

a b

f ′

Then the natural maps
f |ker a : ker a→ ker b x 7→ f(x)

and
f ′ : coker a→ coker b x′ 7→ f ′(x′)

6



are well de�ned, and the following diagram commutes.

ker a ker b

A B

A′ B′

coker a coker b

f |ker a

f

a b

f ′

f ′

Proof. For the �rst, we just have to show that if x ∈ ker a, then f(x) ∈ ker b.

x ∈ ker a =⇒ a(x) = 0 =⇒ 0 = f ′a(x) = bf(x) = 0 =⇒ f(x) ∈ ker b

For the second, we need to show that f ′(x′) doesn't depend on the representative x′ ∈ A′ of
x′ ∈ coker a. Let x′, y′ ∈ A be representatives of x′. Then x′ − y′ ∈ im a, so choose z ∈ A
with a(z) = x′ − y′. We need to show that f ′(x′)− f ′(y′) ∈ im b, but this is clear because

f ′a(z) = f ′(x′ − y′) = f ′(x′)− f ′(y′)

Hence f ′ is well de�ned.

While the previous construction was nice and concrete, the same result holds in the general
setting of an abelian category. In fact, the proof simpler and more interesting in this context.

Lemma 1.1.2. Let A be an abelian category, with a commutative square in A.

A B

A′ B′

f

a b

f ′

Then there are unique maps

ker a→ ker b coker a→ coker b

making the following diagram commute.

ker a ker b

A B

A′ B′

coker a coker b

f

a b

f ′
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Proof. Let ι : ker a → A be the morphism associated to the kernel of a. By the universal
property of the kernel, there is a unique morphism ker a → ker b making the following
diagram commute.

B

ker b B′

ker a

b

0

0

f◦ι

Let q : B′ → coker b be the morphism associated to the cokernel of b. By the universal
property of the cokernel, there is a unique morphism coker a→ coker b making the following
diagram commute.

A′

coker a A

coker b

q◦f ′ a

0

0

We can also piece together a couple of squares of this type as in the next lemma.

Lemma 1.1.3. Suppose we have a commutative diagram of R-modules with exact rows.

A B C

A′ B′ C ′

f

a

g

b c

f ′ g′

The natural maps ker a→ ker b etc. make exact sequences

ker a→ ker b→ ker c coker a→ coker b→ coker c

Proof. For the kernels, this is immediately obvious since ker a→ ker b is just the restriction
of f . For cokernels, it is obvious from the description of f ′ that g′ ◦ f ′ = 0. If x′ ∈ ker g′,
there is a lift x′ ∈ ker g′ = im f ′, so there is y ∈ A′ with f ′(y) = x′. Hence f

′
(y) = f ′(y) = x′,

so ker g′ ∈ im f ′, which proves exactness for the cokernel sequence as well.

Proposition 1.1.4 (Snake lemma). Let R be a ring, and suppose we have the following
commutative diagram of R-modules with exact rows.

A B C 0

0 A′ B′ C ′

f

a

g

b c

f ′ g′
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Then there is an R-module homomorphism δ : ker c→ coker a making an exact sequence

ker a ker b ker c coker a coker b coker cδ

Furthermore, if the original diagram can be extended with exact rows to

0 A B C 0

0 A′ B′ C ′ 0

the the exact sequence can be extended to

0 ker a ker b ker c coker a coker b coker c 0δ

Proof. Perhaps there should be a construction of the map δ which is more categorical in
nature, but the simplest way to construct it is by a diagram chase. Let x ∈ ker c. By
surjectivity of B → C, there is a lift x̃ ∈ B, g(x̃) = x. By commutativity,

g′b(x̃) = cg(x̃) = c(x) = 0

hence b(x̃) ∈ ker g′ = im f ′, so by exactness of the bottom row, b(x̃) ∈ im f ′, so there is
y ∈ A′ with f ′(y) = b(x̃). De�ne δ(x) to be the class of y in coker a = A′/ im a. That is,

δ(x) = (f ′)−1
(
b(x̃)

)
We need to check that δ(x) doesn't depend on the lift x̃. Let x̃, x̃′ be lifts of x ∈ ker c. Let

y, y′ ∈ A′ with f ′(y) = b(x̃) and f ′(y′) = b(x̃′). (The elements y, y′ are unique by injectivity
of f ′.) We need to show y − y′ ∈ im a. Note that g(x̃ − x̃′) = 0, so by exactness of the top
row, there is z ∈ A of so that f(z) = x̃− x̃′. By commutativity,

bf(z) = x̃− x̃′ = b(x̃)− b(x̃′) = f ′(y − y′) = f ′a(z)

Then by injectivity of f ′, we conclude that a(z) = y− y′, hence y− y′ ∈ im a. Thus δ is well
de�ned. The sequence is exact except possibly at ker c and coker a by Lemma 1.1.3.

We �rst consider exactness at ker c. Let x ∈ ker b. Then δg(x) is found by taking a lift of
g(x), for which we can choose x, then taking the image under b, which is zero since x ∈ ker b,
then taking the class in coker a, so im g ⊂ ker δ.

For the reverse inclusion, suppose y ∈ ker δ ⊂ ker c. We choose a lift x ∈ B with g(x) = y,
and since y ∈ ker δ, the class of b(y) in coker a is zero (we are identifying A′ with its image in
B′ since f ′ is injective). That is, b(y) ∈ im a, so there is z ∈ A so that b(x) = f ′a(z). Then

b(x) = f ′a(z) = bf(z) =⇒ x− f(z) ∈ ker b

and
g(x− f(z)) = g(x)− gf(z) = y − 0 = y

9



Thus x−f(z) ∈ ker b maps to y under g, so y ∈ im g. Thus ker δ ⊂ im g, and we have proven
exactness at ker c. Now we prove exactness at coker a. Let x ∈ ker c, and let x̃ ∈ B be a lift
of x. Then

f ′δ(x) = f ′
(

(f ′)−1
(
b(x̃)

))
= f ′(f ′)−1b(x̃) = b(x̃) = 0 ∈ coker b

Thus im δ ⊂ ker f ′. For the reverse inclusion, suppose y ∈ ker f ′ ⊂ coker a with representa-
tive y ∈ A′. Then

f ′y = f ′(y) = 0 ∈ coker b =⇒ f ′(y) ∈ im b

Thus there is x̃ ∈ B so that b(x̃) = f ′(y). Then δ(g(x̃)) = y basically by de�nition of δ.
Thus ker f ′ ⊂ im δ, proving exactness at coker a.

The �nal remark about extending the exact sequences to zeros is mostly obvious.

The snake lemma is surprisingly useful. Our main application will be using it to obtain a
long exact sequence on the homology of a chain complex, in Proposition 1.3.1. But it also
comes up in de�ning cup products for group cohomology, for example.

1.2 Homology of chain complexes

De�nition 1.2.1. A chain complex of R-modules is a sequence (Cn)n∈Z of R-modules
with R-module homomorphisms dn : Cn → Cn−1 such that dn−1dn = 0 for all n ∈ Z.

· · · Cn Cn−1 Cn−2 · · ·dn+1 dn dn−1 dn−2

This may alternatively be written with indices ascending such as dn : Cn → Cn+1 or drawn
with arrows going to the left, or the indices may be shifted so that dn−1 : Cn → Cn−1, but
these are not important distinctions.

This may also be de�ned in a general context of a abelian category or even just a category
with some notion of a zero map.

Remark 1.2.2. A chain complex generalizes the notion of an exact sequence. In an exact
sequence im = ker at each term, while a chain complex weakens this to im ⊂ ker.

De�nition 1.2.3. Let C = (Cn, dn) be a chain complex of R-modules. To each term Cn we
have associated submodules

Zn = ker dn = n-cycles

Bn = im dn+1 = n-boundaries

Hn = Zn/Bn

The submodule Hn(C) = Hn is the nth homology group of C. Depending on the context,
sometimes we add the pre�x �co-� to all of these, making Zn cocycles, Bn coboundaries, Hn

cohomology.
Usually �co� denotes reversing arrows in category theory, but since reversing arrows

doesn't change any structurally for chain complexes, �cohomology of cochain complex" is
not meaningfully di�erent than �homology of a chain complex� in a general context.
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De�nition 1.2.4. Let (Cn, dn) and (Dn, ∂n) be chain complexes of R-modules. A chain
map between them is a sequence of R-module homomorphisms fn : Cn → Dn making the
following diagram commute.

· · · Cn Cn−1 Cn−2 · · ·

· · · Dn Dn−1 Dn−2 · · ·

dn+1 dn

fn

dn−1

fn−1

dn−2

fn−2

∂n+1 ∂n ∂n−1 ∂n−2

Remark 1.2.5. There is a category with objects being chain complexes over R and chain
maps for morphisms. There are various notations for this, common ones include Ch(R) and
Kom(R).

Ch(R) is an abelian category (no proof given here). Products, kernels, and cokernels are
all constructed by taking the product/kernel/cokernel at each term (again, no proof given
here). Thus the notion of exact sequences makes sense for chain complexes.

Lemma 1.2.6. Let A = (An), B = (Bn), C = (Cn) be chain complexes of R-modules. A
sequence A → B → C of chain complexes is exact if and only if each An → Bn → Cn is
exact.

Proof. Omitted.

If the concept of abelian category is foreign to the reader, they should just take the previous
lemma as a de�nition for when a sequence of chain complexes is exact.

Remark 1.2.7. (This is somewhere between a de�nition and theorem.) Let C = (Cn, d
C
n ), D =

(Dn, d
D
n ) be chain complexes and f = (fn), fn : Cn → Dn be a chain map. Then f induces

maps
Hn(C)→ Hn(D) x 7→ fn(x)

These are called the induced maps on homology. We verify that this is well de�ned. Let
x ∈ Hn(C) with representative x ∈ Zn(C) = ker dCn . Since f is a chain map, we have the
following commutative square.

Cn Cn−1

Dn Dn−1

dCn

fn fn−1

dDn

Thus
dDn fn(x) = fn−1d

C
n (x) = 0 =⇒ fn(x) ∈ ker dDn = Zn(D)

so it makes sense to take the class of fn(x) in Hn(D). If x, x′ are both representatives of
x ∈ Hn(C), then x− x′ ∈ Bn(C), hence there is y ∈ Cn+1 with dCn+1(y) = x− x′. Using the
chain map property of f again,

fn(x)− fn(x′) = fn(x)− fn(x′) = fn(x− x′) = fnd
C
n+1(y) = dDn+1fn+1(y)

hence fn(x)− fn(x′) lies in the image of dDn+1, which is to say, it represents the zero class in
Hn(D). Thus the induced map Hn(C)→ Hn(D) is well de�ned.
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1.3 Short exact sequence of complexes gives long exact

sequence of cohomology

Apologies for the weird letters W,X, Y in the next proposition. A,B,C were not allowed
due to possible confusion with boundaries Bn and similarly X, Y, Z would not work because
of possible confusion with coboundaries Zn.

Proposition 1.3.1 (LES induced by SES of chain complexes). Let 0→ W → X → Y → 0
be a short exact sequence of chain complexes. Then there is a long exact sequence

· · · → Hn(W )→ Hn(X)→ Hn(Y )→ Hn−1(W )→ Hn−1(X)→ Hn−1(Y )→ Hn−2(W )→ · · ·

where Hn(W ) → Hn(X) → Hn(Y ) are the maps induced by the chain maps W → X → Y ,
and the �connecting homomorphisms� Hn(Y )→ Hn−1(W ) come from the snake lemma.

Proof. We already have the maps Hn(W ) → Hn(X) → Hn(Y ). We need to construct the
connecting homomorphisms Hn(Y )→ Hn−1(W ) so that everything is exact. To do this, we
apply the snake lemma to the following commutative diagram.

Wn/Bn(W ) Xn/Bn(X) Yn/Bn(Y ) 0

0 Zn−1(W ) Zn−1(X) Zn−1(Y )

dWn dXn dYn
(1.3.1)

The vertical arrows are induced by the boundary maps from the complexes, and the hor-
izontal maps are induced by the maps W → X → Y , and the rows are exact because
0→ Wn → Xn → Yn → 0 is exact for all n.

We claim that the kernel of dWn is exactlyHn(W ), and the cokernel isHn−1(W ). As justi�-
cation for this, we just provide the commutative following diagram, where Bn = Bn(W ), Zn =
Zn(W ), Hn = Hn(W ).

0 Zn Wn Wn−1 Wn−1/Bn−1 0

0 Zn/Bn = Hn Wn/Bn Zn−1 Zn−1/Bn−1 = Hn−1 0

dWn

dWn

By the snake lemma applied to diagram 1.3.1, we have an exact sequence

Hn(W )→ Hn(X)→ Hn(Y )→ Hn−1(W )→ Hn−1(X)→ Hn−1(Y )

Doing this same for each n gives the long exact sequence. There is some mild thinking to
verify that the maps Hn(W )→ Hn(X) induced by the snake lemma on 1.3.1 give the same
as the induced maps Hn(W )→ Hn(X) by usual means, but this is not very interesting.

The reader who wants to learn group cohomology should probably skip from here to the
start of the section on group cohomology. The rest of this section is not closely related.
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1.4 Injectives and projectives

De�nition 1.4.1. An R-module Q is injective if every diagram as below can be completed
to a commutative diagram by choosing some φ.

0 X Y

Q
φ

Equivalently, Q is injective if the functor HomR(−, Q) is exact, or if every short exact
sequence 0→ Q→ X → Y → 0 splits (proof of equivalence omitted, see Lang [6]).

De�nition 1.4.2. An R-module P is projective if every diagram as below can be completed
to a commutative diagram by choosing some φ.

P

X Y 0

φ

Equivalently, P is projective if the functor HomR(P,−) is exact, or if every short exact
sequence 0→ X → Y → P → 0 splits (proof of equivalence omitted, see Lang [6]).

De�nition 1.4.3. An abelian category A has enough injectives if for every object X in A,
there is an injective object I and a monomorphism X → I. (In the category of R-modules,
monomorphism is equivalent to injective map.)

De�nition 1.4.4. An abelian category A has enough projectives if for every object X
in A, there is a projective object P and an epimorphism P → X. (In the category of
R-modules, epimorphism is equivalent to surjective map.)

De�nition 1.4.5. Let A be a category. An projective resolution of an object X (in A)
is an exact sequence

· · · → P1 → P0 → X → 0

where each Pi is projective (in A). Analogously, an injective resolution of X is an exact
sequence

0→ X → Q0 → Q1 → · · ·

where each Qi is injective (in A).

Philosophically speaking, why should we care whether a category has enough injectives or
projectives? The main reason is that having enough injectives (resp. projectives) means that
every object has an injective (resp. projective) resolution, and that having such resolutions
is necessary to de�ne derived functors, such as Ext.

Proposition 1.4.6. Let A be an abelian category with enough injectives (projectives). Then
every object X has an injective (projective) resolution in A.

13



Proof. As A has enough injectives, choose an injective object I0 with a monomorphism
φ : X ↪→ I0. Let π : I0 → cokerφ be the cokernel map. Choose a monomorphism ψ :
cokerφ ↪→ I1 with I1 injective. We want θ : I0 → I1 extending our exact sequence.

0 X I0 I1

cokerφ

φ

π

θ

ψ

Since I1 is injective, there exists θ making the following diagram commute.

0 X I0

I1

φ

ψπφ
θ

Since φ is a monomorphism, θφ = ψπφ implies θ = ψπ, hence θ makes our original diagram
commute.

To check exactness of this sequence, we need ker θ = imφ. By de�nition, imφ =
ker cokerφ, which is then equal to kerπ. On the other hand, ker θ = kerψπ, but since
ψ is a monomorphism, this is just kerπ. Thus the sequence is exact.

We then iterate this construction to contiue extending the exact sequence, and obtain
an injective resolution of X. The corresponding statement about projective resolutions may
be proved using the exact same argument with all arrows reversed. Alternatively, it follows
from the statement about injectives by considering the opposite category Aop. (Note that
Aop is also abelian, and injective objects in A correspond to projective objects in Aop.)

Theorem 1.4.7. Let R be a ring. The categories of R-modules and �nitely generated R-
modules have enough projectives.

Proof. Every R-moduleM is a quotient of a free R-module, and free modules are projective.
More concretely, if M is an R-module, let {mi}i∈I be a generating set for M , and let F be
the free R-module with basis set {mi},

F =
⊕
i∈I

Rmi

and we have a surjective map F →M by sending mi ∈ F to mi ∈M . This same argument
shows that ifM is �nitely generated, then it is a quotient of a �nitely generated free module.

Unfortunately the analogous statement for injectives is not nearly as easy to prove, so it
takes up our next few sections. First, we state without proof an occasionally useful criterion
for injectivity.

Proposition 1.4.8 (Baer's criterion). Let R be a ring and Q an R-module. Then Q is
injective (in the category of R-modules) if and only if for every left ideal I ⊂ R any R-module

homomorphism φ : I → Q can be extended to an R-module homomorphism φ̃ : R→ Q.

Proof. Proposition 36 of Dummit and Foote [3].

14



1.4.1 Divisible abelian groups

De�nition 1.4.9. Let A be an abelian group. A is divisible if for every n ∈ Z, n 6= 0, the
map

A→ A a 7→ na

is surjective.

Example 1.4.10. No �nite abelian group is divisible. Examples of divisible groups include
the additive group (Q,+), Q/Z, and the multiplicative group (C×,×).

Lemma 1.4.11. An abelian group is injective (in the category of abelian groups) if and only
if it is divisible.

Proof. (Injective =⇒ divisible) LetQ be an injective abelian group. Let q ∈ Q, and consider
the map Z → Q, 1 7→ q. Since Q is injective, the following diagram can be completed to a
homomorphism φ : 1

n
Z→ Q.

0 Z 1
n
Z

Q

17→a
φ

For any n ∈ Z and any q ∈ Q, we get nφ
(

1
n

)
= φ(1) = q, so the map n : Q→ Q is surjective,

hence Q is divisible.
(Divisible =⇒ injective) Let Q be a divisible abelian group, and suppose we have the

diagram below. We need to construct h making the diagram commute.

0 A C

Q

f

g
h

Consider the set S of pairs (B, hB) where A ⊂ B ⊂ C and hB : B → Q is a lift making the
following diagram commute.

A B C

Q

f

g
hB

We give S a partial order by (B, hB) ≤ (B′, hB′) when B ⊂ B′ and hB′ |B = hB.

A B B′ C

Q

f

g
hB

hB′
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We want to apply Zorn's lemma to S, so we need to show that any ascending chain has an
upper bound. Let (Bi, hBi) be an ascending chain.

A B1 B2 · · ·

Q

f

g
hB1

hB2

Then an upper bound is given by(B̃, hB̃) where B̃ is the subgroup generated by
⋃
iBi and

the map hB̃ is de�ned by hB̃(b) = hB(b) for b ∈ B. Thus Zorn's lemma applies to S, so there
is a maximal element (Bmax, hBmax).

If we can show that Bmax = C, and then we are done. To do this, it is su�cient to show
that for any pair (B, hB) such that B 6= C, there is (B′, hB′) ∈ S with B ( B′, since if we do
this, then if Bmax 6= C, there is a larger subgroup strictly containing Bmax with an extension,
contradicting maximality of Bmax, and resulting in the conclusion that Bmax = C.

Now we show that if (B, hB) ∈ S with B 6= C, there exists (B′, hB′) ∈ S with B ( B′

and hB′|B = hB. Let (B, hB) ∈ S with B 6= C and choose c ∈ C \ B, and let Bc = B + c =
B + Zc ⊂ B be the subgroup generated by B and c.

A B Bc C

Q

f

g

6=

hB

We consider two cases:

1. There does not exist n ∈ Z≥1 such that nc ∈ B.

2. There exists n ∈ Z≥1 such that nc ∈ B.

In case (1), Bc = B+Zc = B⊕Zc, and hB can be extended to hBc : Bc → Q by hBc |B = hB
and hBc(c) = 0. (Or set hBc(c) to be anything, it doesn't have to be zero.) Thus Bc is a
strictly larger extension than B.

In case (2), let n ∈ Z≥1 be the smallest integer so that nc ∈ B. Finally, we use the fact
that Q is divisible to choose q ∈ Q such that nq = hB(nc). Consider the map π : B ⊕ Z→
Bc, (b,m) 7→ b+mc, which �ts into the exact sequence

0→ kerπ → B ⊕ Zc π−→ Bc → 0

and (via the �rst isomorphism theorem) induces an isomorphism (B⊕Zc)/ kerπ ∼= Bc. Now
consider the map

h̃ :B ⊕ Z→ Q h̃(b,m) = hB(b) +mq

If (b,m) ∈ kerπ so that b + mc = 0, then −mc ∈ B, so |m| ≥ n and n divides m (by
minimality of n), so m = nt for some t ∈ Z, and then

h̃(b,m) = hB(b) +mq = hB(−mc) +mq = hB(−tnc) + tnq = t(−hB(nc) + nq) = 0
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This shows that kerπ ⊂ ker h̃. Thus h̃ factors through (B ⊕ Zc)/ kerπ ∼= Bc to give a map
hBc : Bc → Q satisfying hBc(b+mc) = hB(b) +mq and in particular hBc(b+ 0c) = hB(b), so
hBc extends hB.

A B Bc C

Q

f

g

6=

hB

hBc

Remark 1.4.12. The proof given above that an injective abelian group is divisible also
holds in the category of �nitely generated abelian groups, since the groups used, Z and 1

n
Z,

are both �nitely generated. That is to say, an injective object in the category of �nitely
generated abelian groups must be divisible.

Remark 1.4.13. The simplest examples of divisible abelian groups are Q and Q/Z, so these
are injective Z-modules. Note that there are no �nite abelian groups which are divisible.

Proposition 1.4.14 (Properties of divisible abelian groups). .

1. The tensor product of a divisible abelian group with any abelian group is divisible.

2. The torsion subgroup of a divisible abelian group is divisible.

3. A divisible group splits as a direct sum of its torsion subgroup and a torsion free group.

4. The tensor product of a divisible abelian group with a torsion group is zero.

5. The tensor product of two torsion free abelian groups is torsion free.

6. Then tensor product of divisible abelian groups is uniquely divisible.

Proof. (1) Let A,B be abelian groups with A divisible. Then for a generator a⊗ b of A⊗B
and n ∈ Z, there exists a′ ∈ A such that na′ = a, so n(a′⊗ b) = na′⊗ b = a⊗ b. Since simple
tensors generate A⊗B, this shows that A⊗B is divisible.

(2) Let A be divisible and let Ator ⊂ A be the torsion subgroup. For n ∈ Z, consider
n : Ator → Ator. Let a ∈ Ator. Since A is divisible, there exists a′ ∈ A such that n′a = a.
Since a is torsion, a′ is also torsion, so a′ ∈ Ator. Thus Ator is divisible.

(3) Let A be divisible and Ator the torsion subgroup. Since Ator is divisible, it is injective
in the category of abelian groups, so

0→ Ator → A→ A/Ator → 0

is split exact. Clearly A/Ator is torsion free.
(4) Let A be divisible and B be torsion. Then for a generator a ⊗ b ∈ A ⊗ B, there

exists n ∈ Z such that nb = 0, and then there exists a′ ∈ A such that na′ = a. Then
a⊗ b = na′ ⊗ b = a′ ⊗ nb = a′ ⊗ 0 = 0. So all the generators are zero, so A⊗B = 0.

(5) Let A,B be torsion free, so they are �at. So − ⊗ A is exact, and − ⊗ B is exact.
Then the composition − ⊗ B ◦ ⊗A of functors is exact, but this is �the same � (naturally
isomorphic as functors) as ⊗(A⊗B), so A⊗B is �at, so it is torsion free.
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(6) Let A,B be uniquely divisible. By (1), A ⊗ B is divisible, so to show it is uniquely
divisible, it su�ces to show that it is torsion free. By (2), they split as A ∼= Ator ⊕Afree and
B ∼= Btor ⊕Bfree. Then

A⊗B ∼= (Ator ⊕ Afree)⊗ (Btor ⊕Bfree)
∼= (Ator ⊗Btor)⊕ (Ator ⊗Bfree)⊕ (Afree ⊗Btor)⊕ (Ator ⊗Bfree)

By (4), the �rst three terms vanish, and by (5), the last term is torsion free.

1.4.2 Enough injectives for R-mod

De�nition 1.4.15. Let R be a ring andM an R-module. We de�neM∨ = HomZ(M,Q/Z).
We view M∨ as an R-module via the action

(r · φ)(m) = φ(r ·m)

where r ∈ R,m ∈M,φ ∈M∨, and r ·m is the action of R on M .
We view HomZ(−,Q/Z) = M 7→ M∨ as a contravariant functor from the category of

R-modules to itself. Note that because Q/Z is divisible, it is an injective abelian group, so
the functor HomZ(−,Q/Z) is exact (as a functor from abelian groups to abelian groups), so
it is an exact functor from R-mod to itself.

De�nition 1.4.16. Let M be an R-module. The evaluation map is

ev : M → (M∨)∨ m 7→ (φ 7→ φ(m)) ev(m)(φ) = φ(m)

De�nition 1.4.17. Let R be a ring and M an R-module. The free module on M is

F (M) =
⊕
m∈M

R[m]

with the accompanying surjection

F (M)→M
∑
i

ri[mi] 7→
∑
i

rimi

We think of M 7→ (F (M)→M) as a functor from R-mod to the arrow category of R-mod.

De�nition 1.4.18. Let R be a ring and M an R-module. Set J(M) = (F (M∨))∨.

Theorem 1.4.19. Let R be a ring and M an R-module.

1. The evaluation map ev : M → (M∨)∨ is injective.

2. There is a (canonical) embedding M ↪→ J(M).

3. R∨ is an injective R-module.

4. J(M) is an injective R-module.
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5. The category of R-modules has enough injectives.

Proof. (1) We show that if x ∈M and x 6= 0, then ev(x) 6= 0. Equivalently, we need to show
that there is φ ∈ M∨ = HomZ(M,Q/Z) such that ev(x)(φ) = φ(x) 6= 0. Let x ∈ M,x 6= 0.
Let M ′ ⊂M be the abelian subgroup generated by x (NOT the R-submodule generated by
x, this is not the same thing). Then there is a nonzero map ψ : M ′ → Q/Z which does not
vanish on x (for example, if nx = 0, send x to 1

n
). Then because Q/Z is an injective abelian

group, this extends to a map ψ̃ : M → Q/Z which does not vanish on x.

0 M ′ M

Q/Z

ψ
ψ̃

Then ev(x)(ψ̃) = ψ̃(x) 6= 0. Hence ev is injective.
(2) Consider the canonical surjection F (M∨) → M∨. Apply the contravariant, exact

functor (−)∨ to obtain (M∨)∨ → (F (M∨))∨ = J(M). Since (−)∨ is exact, the surjection
becomes an injection. Thus we have injections

M
ev−→ (M∨)∨ → J(M)

which is to say, M embeds into J(M).
(3) Let N be an R-module. As some people would say,

HomR(N,HomZ(R,Q/Z)) = HomZ(N,Q/Z)

However, I think that it's sloppy to write an equality here. What this really means is that
there is a natural isomorphism of R-modules

HomR(N,HomZ(R,Q/Z))→ HomZ(N,Q/Z) φ 7→
(
n 7→ φ(n)(1)

)
with inverse given by

HomZ(N,Q/Z)→ HomR(N,HomZ(R,Q/Z)) ψ 7→
(
n 7→

(
1 7→ ψ(n)

))
(details left unchecked by me, the author). By �natural isomorphism,� I mean that this is
furthermore an isomorphism of functors

(−)∨ = HomZ(−,Q/Z) ∼= HomR(−,HomZ(R,Q/Z)) = HomR(−, R∨)

(once again, details left unchecked). Therefore since (−)∨ is exact, HomR(−, R∨) is exact,
so R∨ is injective.

(4) Note that we have an isomorphism of R-modules

J(M) = (F (M∨))∨ = HomZ

(⊕
φ∈M∨

R[φ],Q/Z

)
∼=
∏
φ∈M∨

HomZ(R[φ],Q/Z) ∼=
∏
φ∈M∨

R∨

Since a product of injective objects is injective and R∨ is injective by (3), this product is
injective.

(5) This is immediate from (2) and (4).

19



Remark 1.4.20. The previous proof, combined with the fact that the torsion subgroup of a
divisible abelian group is injective (1.4.14) shows that the category of torsion abelian groups
has enough injectives, since the canonical embedding M ↪→ J(M) has image in the torsion
subgroup, which is also injective.

1.4.3 Projectives and injectives in some subcategories of abelian
groups

Proposition 1.4.21. The category of �nitely generated abelian groups has enough projec-
tives, but not enough injectives. (In fact, there are no nonzero injective objects at all in this
category).

Proof. Every �nitely generated abelian group A is a �nite direct sum of cyclic groups,

A ∼= Zr ⊕
⊕
i

Z/niZ

Then A is a quotient of a a free module on the same number of generators by sending
a generator for each in�nite cyclic summand to a generator for the corresponding cyclic
summand of A. That is, we have the surjection

Zr ⊕
⊕

i Z Zr ⊕
⊕

i Z/niZ
Idr ⊕π

where π sends the generator of the ith summand Z to the generator of Z/niZ. Hence there
are enough projectives.

Now suppose A is an injective object in the category of �nitely generated abelian groups.
By remark 1.4.12, A is divisible. However, there are no divisible �nitely generated abelian
groups, except the trivial group.

Proposition 1.4.22. The category of torsion abelian groups has enough injectives, but not
enough projectives.

Proof. First, we show that there are enough injectives. Let M be a torsion abelian group.
Then we have an embedding M → J(M), and by Theorem 1.4.19, J(M) is injective. Note
that the torsion subgroup of a divisible group is divisible, and that M lands in the torsion
subgroup of J(M), so M embeds into an injective object.

Now we show that there are not enough projectives 1. To show there are not enough
projectives, we show that there is no projective which surjects onto Z/2Z. Suppose there is
a projective object P with a map φ : P → Z/2Z and an element x ∈ P so that φ(x) = 1.
For k ≥ 1, we have the quotient map π : Z/2kZ→ Z/2Z, 1 7→ 1. Since P is projective, there

is a lift φ̃ : P → Z/2kZ with φ̃(x) = 1.

P

Z/2kZ Z/2Z 0

φ
φ̃

π

1In fact, there are no nontrivial projective objects in this category, but the proof given here
https://math.stackexchange.com/questions/1038786/existence-of-projectives-in-the-category-of-torsion-
abelian-groups requires some knoweldge about Prufer groups, so we omit it. This proof is also given at that
source, in the original question.
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Note that any element of Z/2kZ which maps to 1 under π is a generator, since it is coprime

to 2k. In particular, φ̃(x) is a generator of Z/2kZ, so x ∈ P has order at least 2k. Since
k was arbitrary, this shows that x has arbitrarily large order so x is not torsion, which is
impossible since P is a torsion group. Thus P does not exist.

1.5 Computations of Ext groups

As previously discussed, we do not give a full development of the de�nition of Ext. However,
we recall the usual strategy for computing Ext groups via projective and injective resolutions.
Let R be a ring and let A,B be R-modules. Given a projective resolution of A

· · · → P1 → P0 → A→ 0

we apply the contravariant functor HomR(−, B) and drop the A term to obtain a chain
complex

0→ HomR(P0, B)→ HomR(P1, B)→ · · ·

The ith homology of this chain complex is ExtiR(A,B). Alternatively, one may being with
an injective resolution of B,

0→ B → I0 → I1 → · · ·

and apply the covariant functor HomR(A,−) and drop the B term to obtain a chain complex

0→ HomR(A, I0)→ HomR(A, I1)→ · · ·

The ith homology of this chain complex is also ExtiR(A,B).
The main issue that needs addressing here is why on earth this computation does not

depend on the choice of projective objects Pi or the choice of injective objects Ii. It is not at
all clear that this is true from the outset. We even threw away the one term that we know
doesn't depend on any choices, so maybe this is total nonsense. It takes some work, and
I'm lazy, so I haven't done it here, but there are a few key technical results in homological
algebra which tell us that this does not depend on the choice of resolution.

Now we give a variety of examples. The following computations of Ext groups are all
examples, exercises, or theorems from Dummit and Foote [3].

Proposition 1.5.1. Let A be an abelian group. Then

ExtiZ(Z/mZ, A) ∼=


mA i = 0

A/mA i = 1

0 i ≥ 2

Proof. We have a projective resolution of Z/mZ

0→ Z m−→ Z→ Z/mZ→ 0
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Then we apply the contravariant functor HomZ(−, A) and drop the Z/mZ term to obtain
a chain complex depicted below. Using the canoncial isomorphism HomZ(Z, A) ∼= A via
φ 7→ φ(1), we get an isomorphism of chain complexes.

0 HomZ(Z, A) HomZ(Z, A) 0

0 A A 0

m

∼= ∼=

m

Thus Ext0
Z(Z/mZ, A) ∼= mA and Ext1

Z(Z/mZ, A) ∼= A/mA, and the higher ext groups vanish.

Proposition 1.5.2. Let m, d be integers with d|m, and let A be an abelian group of exponent
m (aka A is a Z/mZ-module). Then

ExtiZ/mZ(Z/dZ, A) =


dA i = 0

m/dA/dA i = 1, 3, . . .

dA/(m/d)A i = 2, 4, . . .

Proof. We begin with a projective (free) resolution of Z/dZ (in the category of Z/mZ-
modules).

· · · Z/mZ Z/mZ Z/mZ Z/mZ Z/dZ 0
m/d d m/d d π

The map π is the quotient map 1 7→ 1, whose kernel is generated by m/d, which justi�es
exactness at the �rst Z/mZ term. Exactness at the other terms is clear.

Then we apply the contravariant functor HomZ/mZ(−, A) and drop the Z/dZ term to ob-
tain the upper chain complex depicted below. Using the isomorphism HomZ/mZ(Z/mZ, A) ∼=
A, we get an isomorphism of chain complexes.

0 HomZ/mZ(Z/mZ, A) HomZ/mZ(Z/mZ, A) HomZ/mZ(Z/mZ, A) · · ·

0 A A A · · ·

d

∼=

m/d

∼=

d

∼=

d m/d d

The ith homology of this periodic chain complex is ExtiZ/mZ(Z/dZ, A), so we read o� exactly
the homology as claimed.

Lemma 1.5.3. Z/mZ is an injective Z/mZ-module.

Proof. By Baer's criterion 1.4.8, it su�ces to show that for any ideal I ⊂ Z/mZ and any

Z/mZ-linear map I → Z/mZ, there is an extension φ̃ : Z/mZ→ Z/mZ. An ideal of Z/mZ
is a subgroup of the form nZ/mZ. Any such subgroup can be written as dZ/mZ where
d = gcd(n,m), in particular, d|m.

Suppose we have φ : dZ/mZ → Z/mZ. By linearity, φ is determined by φ(d). Since d
has order m/d, it must be mapped to something of order m/d, so it is mapped to something
in the subgroup dZ/mZ (since �nite cyclic groups have a unique subgroup of each divisor

order), so φ(d) = kd. Then we extend φ to Z/mZ by setting φ̃(1) = k.
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Proposition 1.5.4. Let m, d be integers with d|m, and let A be an abelian group of exponent

m (aka A is a Z/mZ-module). Let Â = HomZ/mZ(A,Z/mZ) be the dual group of A. Then

ExtiZ/mZ(A,Z/dZ) =


dÂ i = 0

m/dÂ/dÂ i = 1, 3, . . .

dÂ/(m/d)Â i = 2, 4, . . .

Proof. By the previous lemma 1.5.3, Z/mZ is an injective Z/mZ-module. Thus the following
is an injective resolution of Z/dZ (in the category of Z/mZ-modules).

0→ Z/dZ ↪→ Z/mZ d−→ Z/mZ m/d−−→ Z/mZ d−→ Z/mZ m/d−−→ · · ·

Then we apply the covariant functor HomZ/mZ(A,−) and drop the �rst term to obtain the
chain complex below. We omit the subscript Z/mZ for Hom.

0 Hom(A,Z/mZ) Hom(A,Z/mZ) Hom(A,Z/mZ) · · ·d m/d d

From this, we read o� the necessary homology.

Remark 1.5.5. A �nite abelian group is (non-canonically) isomorphic to its dual, but an
in�nite abelian group need not be.

Proposition 1.5.6. Let Q be an injective R-module. Then ExtnR(A,Q) = 0 for all R-modules
A and all n ≥ 1.

Proof. We have the somewhat trivial injective resolution of Q

0→ Q→ Q→ 0

Then we apply the contravariant functor HomR(A,−) and drop the �rst term to obtain the
even more trivial chain complex

0→ HomR(A,Q)→ 0

whose ith homology is ExtiR(A,Q). Thus Ext0
R(A,Q) = HomR(A,Q) (as always), and higher

Ext groups vanish.

Example 1.5.7. For R = Z, we know that injective is equivalent to divisible. So as examples
of the above we obtain

ExtnZ(A,Q) = 0 ExtnZ(A,Q/Z) = 0

for all n ≥ 1 and all abelian groups A.

Proposition 1.5.8. Let P be a projective R-module. Then ExtnR(P,A) = 0 for all R-modules
A and all n ≥ 1.
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Proof. We have the somewhat trivial projective resolution of P

0→ P → P → 0

Then we apply the covariant functor HomR(−, A) and drop the �rst term to obtain the even
more trivial chain complex

0→ HomR(P,A)→ 0

whose ith homology is ExtiR(P,A). Thus Ext0
R(P,A) = HomR(P,A) as always, and higher

Ext groups vanish.

Example 1.5.9. For R = Z (or any PID), we know that projective is equivalent to free. So
from the above we obtain

ExtnZ(Zk, A) = 0

for all n, k ≥ 1 and all abelian groups A.

Proposition 1.5.10. Let A,B be abelian groups. Then ExtnZ(A,B) = 0 for all n ≥ 2.

Proof. Recall that for abelian groups, injective is equivalent to divisible, and recall that a
quotient of a divisible group is divisible. We know that Z-mod has enough injectives, so
choose an embedding B ↪→ Q with Q injective/divisible. Then the quotient Q/B is also
divisible, to it is injective. Thus we have an injective resolution

0→ B → I → I/B → 0

Then we apply the covariant functor HomZ(A,−) and drop the B term to obtain a chain
complex whose ith homology is ExtiZ(A,B).

0→ HomZ(A, I)→ HomZ(A, I/B)→ 0

We can't say very much about Ext0 and Ext1, but we can read o� from this that ExtnZ(A,B) =
0 for n ≥ 2.

Proposition 1.5.11. Let A be a torsion abelian group. Then

ExtiZ(A,Z) =

{
0 i = 0, i ≥ 2

HomZ(A,Q/Z) i = 1

Proof. We have an injective resolution of Z

0→ Z→ Q→ Q/Z→ 0

Then we apply the covariant functor HomZ(A,−) and drop the Z term to obtain a chain
complex whose ith homology is ExtiZ(A,Z).

0→ HomZ(A,Q)→ HomZ(A,Q/Z)→ 0

Because A is torsion and Q is torsion free, HomZ(A,Q) = 0. Thus the 0th homology is zero,
the �rst homology is HomZ(A,Q/Z), and the higher homology groups vanish.
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1.5.1 Extensions and Ext

De�nition 1.5.12. Let A,B be R-modules. An extension of B by A is a short exact
sequence of R-modules

0→ B → E → A→ 0

Sometimes we are careless and refer to the object E as the extension, but this is not proper
terminology.

De�nition 1.5.13. Two extensions 0→ B → E → A→ 0 and 0→ B → E ′ → A→ 0 are
equivalent if there is an isomorphism θ : E → E ′ making the following diagram commute.

E

0 B A 0

E ′

θ∼=

This is an equivalence relation.

A warning: It is NOT su�cient to have an isomorphism E ∼= E ′ if the diagram does not
commute. That is, there may be extensions such that E,E ′ are isomorphic, and yet they
are not equivalent extensions.

This is the real reason that it is improper to speak of the object E as the extension, since
even the isomorphism class of E does not determine the equivalence class of the extension
0→ B → E → A→ 0. For a concrete example of this, see Example 1.5.15 where there are
several inequivalent extensions with the same object in the middle.

Theorem 1.5.14. There is an isomorphism between Ext1
R(A,B) and the group of equivalence

classes of extensions 0→ B → E → A→ 0.

Proof. Omitted.

Note that I haven't even told you what the group structure on extensions is. There is not
even an obvious choice of de�nition for adding two extensions together. The �right� de�nition
is something called the Baer sum, which involves the categorical pullback. Su�ce it to say,
the additive identity for this group is always the �trivial� or �split extension�

0→ B → B ⊕ A→ A→ 0

where the left map is inclusion into the left factor and the right map is projection onto the
right factor.

Example 1.5.15. We know that Ext1
Z(Z/pZ,Z/pZ) ∼= Z/pZ by Proposition 1.5.1. By the

previous theorem, this means that there are exactly p inequivalent extensions

0→ Z/pZ→ E → Z/pZ→ 0

25



We now give concrete descriptions of these p extensions. As for any two groups, there is the
trivial split extension

0→ Z/pZ→ Z/pZ⊕ Z/pZ→ Z/pZ→ 0

where the left map is inclusion into the left factor and the right map is projection onto
the right factor (the choice of which factor does not change the equivalence class of this
extension). For nontrivial extensions, we have the following p− 1 extensions.

0 Z/pZ Z/p2Z Z/pZ→ 0

0 Z/pZ Z/p2Z Z/pZ→ 0

...
...

...

0 Z/pZ Z/p2Z Z/pZ→ 0

p mod p

2p mod p

(p−1)p mod p

It is clear that none of these is equivalent to the trivial extension, since Z/p2Z 6∼= Z/pZ⊕Z/pZ,
so to know that we have found a representative for every equivalence class, it su�ces to show
that these p − 1 extensions are all inequivalent. Suppose we have an equivalence as below
with m,n ∈ {1, . . . , p− 1}.

0 Z/pZ Z/p2Z Z/pZ 0

0 Z/pZ Z/p2Z Z/pZ 0

mp

Id

mod p

θ∼= Id

np mod p

Commutativity of the right square gives θ(1) ≡ 1 mod p, so θ(1) = 1 + kp for some k. Then
commutativity of the left square gives

np ≡ θ(mp) ≡ mpθ(1) ≡ mp(1 + kp) ≡ mp+mkp2 ≡ mp mod p2

Since m,n < p, this implies m = n.

Remark 1.5.16. Dummit and Foote do the same example where they describe the p distinct
extension of Z/pZ by itself, except that they write the nontrivial extensions as

0→ Z/pZ p−→ Z/p2Z n mod p−−−−→ Z/pZ→ 0

where the left map is the inclusion 1 7→ p and the right map is x 7→ nx mod p. As above,
this gives p− 1 inequivalent extensions for n ∈ {1, . . . , p− 1}.
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Chapter 2

In�nite Galois theory

We assume the reader is already familiar with the Galois correspondence for �nite �eld
extensions. If not, there are many sources for this, such as Dummit and Foote [3] and Lang
[6].

However, knowledge of �nite extensions is insu�cient for the ways that we want to
describe Brauer groups later. For that, we will need to consider the separable closure of a
�eld. (In the case of characteristic zero, separable closure is the same as algebraic closure.)
Occasionally the separable closure is only a �nite extension of the base �eld, such as C/R.
But most of the time, it is an in�nite extension. For example, the separable (also algebraic)
closure of Q, the separable closure of a �nite �eld, etc.

It is either reasonable or crazy to hope that the Galois correspondence between inter-
mediate sub�elds and subgroups of the Galois group would extend to the case of an in�nite
extension. It turns out to be a reasonable hope, for the simple reason that it is true. How-
ever, it is not just a verbatim translation of the usual correspondence. Somehow, topology
gets involved - the Galois group of an in�nite extension is a pro�nite group, so it is a topolog-
ical group. Furthermore, this topology captures how much the Galois correspondence di�ers
from the �nite case. Speci�cally, the closed subgroups play a special role.

In this section we mostly follow chapter 7 of Milne [8].

2.1 Direct and inverse limits

Before we can get to the Galois theory, we need to set up some background on direct and
inverse limits, since they play a crucial role in discussing the Galois group of an in�nite �eld
extension. We will need inverse limits more at this stage, but direct limits are important
much later for describing pro�nite cohomology of in�nite Galois groups, so we include the
material here.

De�nition 2.1.1. A directed set is a set I with a partial ordering ≤, with the additional
property that for every i, j ∈ I, there exists k ∈ K such that i ≤ k and j ≤ k.

De�nition 2.1.2. Let C be a category and I be a directed set. A directed system in C is
a collection of objects {Ai|i ∈ I} and a collection of morphisms f ji : Ai → Aj for i ≤ j, such
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that f ii = IdAi and for i ≤ j ≤ k the following diagram commutes.

Ai Aj

Ak

fji

fki fkj

A perhaps useful mnemonic is that we always try to write our morphisms f ji so that the
�smaller� index (in the sense of the partial order ≤) goes on the bottom.

There are usually two approaches when discussing categorical constructions like the di-
rect limit. The �rst way, which is probably more popular, is to construct or describe the
direct limit as an object, and then show that it has a universal property. The second way,
which we take here, is to de�ne it using the universal property, and only then show that such
an object always exists. I prefer the second method, since it downplays the concrete distinc-
tions between particular categories, and highlights the arrow-theoretic structural properties
involved.

De�nition 2.1.3. Let (Ai, f
j
i ) be a directed system. A direct limit of the system is an

object A with morphisms φi : Ai → A making the following diagram commute,

Ai Aj

A

fji

φi φj

and also with the following universal property: ifB is any object with morphisms ψi : Ai → B
making the analogous triangle commute,

Ai Aj

B

fji

ψi ψj

then there exists a unique morphism h : A→ B making the following diagram commute.

Ai Aj

A

B

fji

φi

ψi

φj

ψj
h

If A exists, we write A = lim−→Ai.

Remark 2.1.4. Due to the universal property, if the direct limit exists, it is unique up to
isomorphism.
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Proposition 2.1.5. Direct limits exist in the categories of groups, abelian groups, and topo-
logical groups. Concretely, in all three, the direct limit of (Ai, f

j
i ) is given by

lim−→Ai =

(⊔
i∈I

Ai

)
/ ∼

The equivalence relation is described by: for xi ∈ Ai, xj ∈ Aj, xi ∼ xj if and only if there
exists k ∈ I with i, j ≤ k such that fki (xi) = fkj (xj). (xi, xj �eventually become the same�.)

Proof. Omitted.

Having discussed direct limits, we now discuss inverse limits. The discussion is essentially
the same, with all of the arrows reversed, except for the concrete description of inverse limit
in the category of groups.

De�nition 2.1.6. Let C be a category and I a directed set. An inverse system or in-
versely directed system is a collection of objects {Ai|i ∈ I} and a collection of morphisms
f ji : Aj → Ai for i ≤ j such that f ii = IdAi and that for i ≤ j ≤ k the following diagram
commutes.

Ai Aj

Ak

fji

fkjfki

(Note that this is identical to the diagram in the de�nition of a directed system, with arrows
reversed.)

De�nition 2.1.7. Let (Ai, f
j
i ) be an inversely directed system. An inverse limit of the

system is a group A with morphisms πi : A→ Aj making the following diagram commute,

Ai Aj

A

fji

πjπi

and such that A is �universal in this diagram,� meaning that if B is another object with
morphisms ψi : B → Ai making the analogous triangle commute,

Ai Aj

B

fji

ψjψi
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then there is a unique morphism h : B → A making the following diagram commute.

Ai Aj

A

B

fji

πjπi

ψjψi
h

If the inverse limit A exists, we write A = lim←−Ai.

Remark 2.1.8. As with direct limits, the universal property ensures that if the inverse limit
exists, it is unique up to isomorphism.

Proposition 2.1.9. Inverse limits exist in the categories of groups, abelian groups, and
topological groups. Concretely, in each case the direct limit of (Ai, f

j
i ) is given by

lim←−Ai =

{
(ai) ∈

∏
i∈I

Ai

∣∣∣∣∣ ai = f ji (aj)∀i ≤ j

}

Proof. Omitted.

Now that we have existence of direct and inverse limits in the categories we care about, we
discuss inducing maps. From a categorical perspective, given a bunch of maps Ai → Bi

between directed (or inverse) systems, there ought to be a canonical way of obtaining a map
lim−→Ai → lim−→Ai (or lim←−Ai → lim←−Bi as the case may be). It turns out that just having maps
Ai → Bi is not su�cient, but this captures the general idea. Now let's give the speci�cs.

De�nition 2.1.10. Let C be a category and I a directed set. Let (Ai, f
j
i ) and (Bi, g

j
i ) be

directed systems (both using the same directed set I). A morphism of directed systems
from (Ai, f

j
i ) to (Bi, g

j
i ) is a collection of morphisms ψi : Ai → Bi making the following

squares commute for every i ≤ j

Ai Bi

Aj Bj

ψi

fji gji
ψj

De�nition 2.1.11. A morphism of inverse systems is de�ned in perfect analogy with the
previous de�nition for directed systems, using an analogous commutative square.

De�nition 2.1.12. Let ψi : Ai → Bi be a morphism of directed systems, and assume the
direct limits lim−→Ai and lim−→Bi exist. Then such a morphism induces a morphism lim−→Ai →
lim−→Bi as follows. Consider the following diagram, where the unlabelled morphisms Ai →
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lim−→Ai, Bi → B lim−→Bi are the morphisms associated with the direct limit.

Ai Aj

Bi lim−→Ai Bj

lim−→Bi

ψi

fji

ψj

h

By the universal property of direct limits, the dotted arrow h exists and is unique. We call
h the direct limit of the maps ψi, and write h = lim−→ψi.

Remark 2.1.13. A morphism of inverse systems similarly induces a morphism on the inverse
limits.

Remark 2.1.14. In terms of the concrete description of direct limits for groups, the direct
limit of morphisms ψi : Ai → Bi is described by

(
⊔
iAi) / ∼ (

⊔
iBi) / ∼

xi ψi(xi)

lim−→ψi

That is, the class of xi ∈ Ai gets mapped to the class of ψi(xi) ∈ Bi.

Exercise 2.1.15. Using the concrete description of inverse limits, describe how the inverse
limit of maps acts on the class of an element in the inverse limit.

Proposition 2.1.16. Let C be the category of abelian groups, and let ψi : Ai → Bi be a
morphism of directed systems. If x ∈ lim−→Ai has a representative xi ∈ Ai such that ψi(xi) = 0,
the (lim−→ψi)(x) = 0. That is,

kerψi ⊂ ker lim−→ψi

Proof. Exercise.

2.2 Pro�nite groups

�Pro�nite� is just a fancy name for the inverse limit of a system of �nite groups. Our main
example of a pro�nite group will be the Galois group of an in�nite �eld extension L/K.
First, we discuss pro�nite groups in some generality, but the application is useful to keep in
mind.

De�nition 2.2.1. A pro�nite group is an inverse limit of �nite groups. Concretely, if
(Gi, φ

i
j) is an inverse system of groups indexed by I, the inverse limit is the group

lim←−Gi =

{
(gi) ∈

∏
i∈I

Gi : φij(gi) = gj

}
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Giving each �nite group Gi the discrete topology and the product topology on
∏
Gi, the

inverse limit is given the subspace topology.

The name �pro�nite� comes from the fact that pro�nite groups �behave like� �nite groups
in some ways, and are �controlled by� their �nite quotients and subgroups in meaningful
ways. This statement is very imprecise and frustrating at �rst, but some intuition hopefully
develops over time. The closest we will get to making this precise is in Proposition 2.2.5,
which says that a pro�nite group is determined by its �nite quotients.

We will also need some general facts about topological groups.

Proposition 2.2.2. Let G be a topological group.

1. An open subgroup of G is also closed. (Every open subgroup is clopen.)

2. A closed subgroup of �nite index is open.

3. If G is compact, every open subgroup has �nite index.

Proof. (1) and (2) are immediate using the facts that cosets of a subgroup partition the
group each coset is homeomorphic to the original subgroup. For (3), the cosets partition the
group, and they are also open, so there can only be �nitely many of them.

Remark 2.2.3. We summarize the previous result somewhat more pictorially. Let G be a
pro�nite group. Combining the previous two results, a subgroup is open if and only if it is
closed and of �nite idex.

{open subgroups} = {closed subgroups of �nite index}

Additionally, a closed subset of a compact set is compact, and since G is Hausdor�, a compact
set is closed. Thus

{closed subgroups} = {compact subgroups}

{open subgroups} = {closed subgroups of �nite index} = {compact subgroups of �nite index}

The original de�nition of pro�nite group is mostly algebraic and category-theoretic, so it is
somewhat surprising that pro�nite groups can also be characterized entirely topologically,
as in the next proposition.

Theorem 2.2.4. A topological group G is pro�nite if and only if it is compact, Hausdor�,
and totally disconnected.

Proof. Shari� 2.1.22 [15].

In the next proposition, the last isomorphism is the important one, the only one really
worth remembering. Philosophically speaking, it says that a pro�nite group is determined
by all of its �nite quotients (the groups G/N are exactly all of the �nite quotients, as per
Remark open i� closed and �nite index). Actually, it says you don't need all of the �nite
quotients, just enough of of them to determine the topology (in the sense of forming a basis
of neighborhoods of the identity).
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Proposition 2.2.5. Let G be a pro�nite group, and let U be the collection of all open normal
subgroups of G. Let H ⊂ G be a closed subgroup, and K ⊂ G a closed normal subgroup.
Then we have isomorphisms

G ∼= lim←−
N∈U

G/N H ∼= lim←−
N∈U

H/(H ∩N) G/K ∼= lim←−
N∈U

G/(NK)

More generally, if V ⊂ U is a set of open normal subgroups that form a basis of open
neighborhoods of the identity of G, then

G ∼= lim←−
N∈V

G/N

Proof. Partial proof in Shari� [15], but mostly not a proof there either, sorry.

All right, enough of general pro�nite group theory, on to the application to in�nite Galois
extensions.

2.3 Main correspondence for in�nite extensions

Let L/K be a Galois extension, and E be the set of intermediate sub�elds K ⊂ E ⊂ L such
that E/K is �nite Galois. Then

L =
⋃
E∈E

E

Additionally, E is partially ordered by inclusion, and is a directed set, since the compositum
EE ′/K is a �nite Galois extension containing E and E ′. If E ⊂ E ′, then we have a restriction
map Gal(E ′/K) → Gal(E/K) by restricting automorphisms of E ′ to E. This makes the
Galois groups Gal(E/K) into an inversely directed system.

Proposition 2.3.1. Let L/K be a Galois extension. Then

Gal(L/K)→ lim←−Gal(E/K) σ 7→ (σ|E)

where E ranges over intermediate sub�elds K ⊂ E ⊂ L such that E/K is �nite Galois.

Proof. Exercise for the reader to check that this actually maps into the direct limit, because
I feel lazy right now. This is clearly a group homomorphism. It is also clear that the kernel
is trivial, since if σ restricts to the identity on each E, it is the identity on L, since L =

⋃
E.

All that remains is surjectivity. Consider (σE) ∈ lim←−Gal(E/K). De�ne σ : L → L by
σ(x) = σE(x) for x ∈ E. By the compatibility condition of (σE) being in the inverse limit,
if x lies in two �elds E,E ′ then σE(x) = σE′(x) = σEE′(x) so this is well de�ned. Since
L =

⋃
E, this de�nes σ on all of L. Clearly σ restricts to σE for each E, so (σE) is in the

image.

The previous theorem shows that the Galois group of an in�nite Galois extension is deter-
mined by the Galois groups of �nite subextensions. This is very important and will be used
very often, because it is often much easier to prove something about a �nite group or a �nite
extension.
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De�nition 2.3.2. Since the inverse limit has a natural topology as a pro�nite group, the
isomorphism above makes Gal(L/K) a topological group. In the case where L/K is �nite,
this is just the discrete topology, but when L/K is in�nite, this gives it a nontrivial topology.
Whenever L/K is Galois, we assume that Gal(L/K) has this topology, called the Krull
topology.

Theorem 2.3.3 (Fundamental theorem of (in�nite) Galois theory). Let L/K be a Galois
extension and let G = Gal(L/K). There is a bijection

{closed subgroups H ⊂ G} ←→ {intermediate subfields K ⊂ E ⊂ L}
H 7→ LH

Gal(L/E)← [ E

In particular, LGal(L/E) = E and Gal(L/LH) = H. Additionally,

1. The correspondence is inclusion reversing, i.e. H1 ⊂ H2 ⇐⇒ LH1 ⊃ LH2.

2. A closed subgroup H ⊂ G is normal if and only if LH/K is Galois. In this case,

Gal(LH/K) ∼= Gal(L/K)/H

3. A closed subgroup H ⊂ G is open if and only if LH/K is a �nite extension. In this
case,

[G : H] = [LH : K]

Proof. Various sources. Theorem 7.12 of Milne [8], Theorem 4.1.12 of Gille & Szamuely
[4]

Remark 2.3.4. The usual Galois correspondence for �nite extensions is a special case of the
above. In the case, every subgroup is closed and open, because G has the discrete topology.
So all of the hypotheses involving closed-ness or open-ness of subgroups become vacuous.

2.4 Absolute Galois group

As alluded to in the introduction to this chapter, the main source of in�nite Galois �eld
extensions will be the separable closure of a �eld (and the accompanying absolute Galois
group). This sort of approach will later be very useful for computing Brauer groups. Let's
see what applying our Galois correspondence for in�nite extensions gets us in this scenario.

De�nition 2.4.1. LetK be a �eld. A separable closure ofK is a �eldKsep which contains
all roots of separable polynomials over K.

Remark 2.4.2. In characteristic zero or for �nite �elds, separable closure is equal to al-
gebraic closure. The separable closure exists and is unique up to isomorphism. Note that
Ksep/K is Galois.

De�nition 2.4.3. The absolute Galois group of K is GK = Gal(Ksep/K).
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The �rst absolute Galois group we should try to compute is for a �nite �eld, since in that
situation we know an awful lot about all the possible �eld extensions. This is the �rst time
we see the usefulness of how the structure of in�nite Galois extension is determined by all
of its �nite subextensions.

Proposition 2.4.4. Let K = Fq be a �nite �eld with q elements. Then GK
∼= Ẑ.

Proof. For each n ≥ 1, there is a unique �nite extension of Fq of degree n, which is Fqn .
Furthermore, the Galois group is

Gal(Fqn/Fq) ∼= Z/nZ

The inclusion relation on Fqn is by divisibility of n, so the inverse system of Galois groups
are the groups Z/nZ for n ≥ 1 ordered by divisibility with quotient maps Z/nZ → Z/mZ
when m|n. This inverse limit of this, as we already know, is Ẑ.

De�nition 2.4.5. Let K be a �eld, and �x a separable closure Ksep. Themaximal abelian
extension ofK, denotedKab, is the maximal subextension ofKsep with abelian Galois group
Gal(Kab/K). (This exists because a compositum of abelian extensions is abelian.)

We will not focus too much on the maximal abelian extension in these notes, since it doesn't
come up too often in the study of Brauer groups. However, it is a very important object in
local class �eld theory, which has connections to this type of material.

Proposition 2.4.6. Let K be a �eld, and let Kab be the maximal abelian extension of K.
Then

Gal(Kab/K) ∼= Gal(Ksep/K)ab

Proof. Consider the tower on the left, with corresponding Galois groups on the right.

Ksep Gal(Ksep/Ksep)

Kab Gal(Ksep/Kab)

K Gal(Ksep/K)

By Galois theory,

Gal(Kab/K) ∼=
Gal(Ksep/K)

Gal(Ksep/Kab)

By de�nition of Kab, this is the maximal abelian quotient of Gal(Ksep/K), which is, by
de�nition, Gal(Ksep/K)ab.
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Chapter 3

Group cohomology

Introduction

As the starting point for group cohomology, we will take a group G, an abelian group
A, where G acts on A, and associate to it an in�nite sequence of cohomology groups
H0(G,A), H1(G,A), H2(G,A), . . .

Each H i(G,A) is an abelian group, and for any �xed i ∈ Z≥1, the association A 7→
H i(G,A) is a functor from the category of G-modules to the category of abelian groups.
All this means is that if we have a morphism of G-modules A → B, then there is an
induced morphism H i(G,A)→ H i(G,B). We haven't told you what exactly a G-module or
morphism of G-modules is yet, but this gives a �avor.

For those who have seen enough homological algebra to know what the Ext functor is, all
H i(G,A) is is ExtZ[G](Z, A). This is the sophisticated approach, but we will also give more
concrete and simpler approaches to de�ning H i(G,A).

However, the description via Ext does not capture the interesting aspects of group co-
homology. It tells you to expect a long exact sequence and various computations involving
projectives and injectives, but much of the power of group cohomology comes from varying
not the A argument of H i(G,A), but instead varying the G entry. As the simplest example,
if G acts on A and H ⊂ G is a subgroup, then H also acts on A, so there are groups H i(G,A)
and H i(H,A). How are they related? It turns out that they are very related, in the sense
that there are functions (called restriction and corestriction) between them which we can
sometimes describe very explicitly.

One question we should answer to justify the study of these functors is what more concrete
situations do they arise? What are examples of groups acting on abelian groups where the
cohomology groups H i(G,A) capture useful information, or answer questions that we might
have had before studying group cohomology altogether?

The primary example that I know of is the following: consider a Galois �eld extension
L/K. The Galois group G = Gal(L/K) acts on L, but how to view L? It is a �eld,
so there are two immediately obvious abelian groups to consider: �rst, the additive group
(L,+), and second, the multiplicative group (L×,×). Because elements of Gal(L/K) are
�eld automorphisms of L, there is an action of Gal(L/K) on both of these groups by taking
an automorphism and having it act on a given element of L. Thus there are cohomology
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groups H i(Gal(L/K), L) and H i(Gal(L/K), L×).
Ok, we have described a situation in which such a group action arises �in nature,� but

what does this actually accomplish? Eventually, we will see that the language of these
groups gives a convenient way to state and prove a generalized version of Hilbert's Theorem
90, which was originally stated without reference to group cohomology.

As a more important application, one can eventually show that H2(Gal(L/K), L×) is
isomorphic to the �relative Brauer group� of L/K. This is likely utterly unhelpful to a
reader trying to learn about group cohomology for the �rst time, since they probably don't
know about Brauer groups. All you need to know at this point is that the Brauer group
can be completely described without reference to group cohomology in terms of �central
simple algebras� over the �eld K, and it turns out (the reader may think of this as magic)
that somehow this group de�ned in terms of central simple algebras is the same as a group
cohomology group. Using techniques of group cohomology, we can often know much more
about the Brauer group than we could if we just tried to stick to the language of algebras.

Lastly, we should say something about the word �cohomology,� since it is likely the reader
has encountered the word before in a more geometric context, such as di�erential geometry
or algebraic topology. There is a connection between geometric cohomology theories (like de
Rham cohomology and singular cohomology), and the purely algebraic group cohomology.
First, there is a rough correspondence

{topological spaces} ←→ {groups}
X 7−→ π1(X)

K(G, 1)←− [ G

As stated, this is very imprecise. We should probably require that X be connected and/or
have a basepoint, and the topological spaces side should also be homotopy classes of spaces,
rather than spaces. Then perhaps this correspondence makes sense.

The somewhat mysterious part of this is theK(G, 1), which is also known as an Eilenberg-
MacLane space. This correspondence gives the connection between group cohomology and
singular homology as follows: for any abelian group A,

H i(K(G, 1), A) ∼= H i(G,A)

The left side is singular homology with coe�cients in A, and the right side is group cohomol-
ogy with A viewed as trivial G-module. This is hopefully the last time we will think about
homology in topological terms in these notes.

3.1 Group rings

As we mentioned previously, one approach to de�ning group cohomology groups is with the
Ext functor, for which one needs a ring. The relevant ring here is the group ring Z[G]. This
group ring will be essential for some other approaches to de�ning H i(G,A) as well, so we
may as well get familiar with it.
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De�nition 3.1.1. Let G be a group. The group ring of G, denoted Z[G] or sometimes
just ZG, is the set of �nite formal linear combinations of elements of g with integer coe�-
cients. These linear combinations are given a ring structure de�ned in perfect analogy with
polynomial addition and multiplication. More explicitly,

Z[G] =

{∑
g∈G

agg | ag ∈ Z, g ∈ G, �nitely many nonzero terms

}

with addition given by ∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g

and multiplication given by(∑
g∈G

agg

)(∑
g∈G

bgg

)
=
∑
σ∈G

(∑
gh=σ

agbh

)
σ

Note that Z[G] is a module over itself, as is any ring.

Example 3.1.2. Let G = Z/2Z× Z/2Z. Write G using the presentation

G = 〈σ, τ | σ2 = τ 2 = 1, στ = τσ〉

The group ring Z[G] is the set

Z[G] = {a+ bσ + cτ + dστ | a, b, c, d ∈ Z}

Addition in Z[G] is works how you would expect. Multiplication also works most as one
would expect, except that σ2 and τ 2 are one. For example,

(1 + σ)(1− σ) = 1− σ + σ − σ2 = 0

So 1 +σ is a zero divisor in Z[G]. This example serves as a warning to avoid assuming much
about Z[G]. It is a unital and associative ring, but it is only commutative if G is, and it need
not be an integral domain. Even though every element of G is invertible, linear combinations
of them need not be units in Z[G].

De�nition 3.1.3. Let G be a group. A G-module is a module A over the ring Z[G].
Equivalently, a G-module is an abelian group A with a G-action such that the G-action
distributes over addition in A. That is, for g ∈ G, a, b ∈ A,

g(a+ b) = ga+ gb

along with the other usual requirements for a group action, for all g, h ∈ G and a ∈ A, with
e the identity in G,

g(ha) = (gh)a ea = a

Alternately, one may think of encoding the G-action on A as a group homomorphism G→
Aut(A). A morphism of G-modules is a morphism of Z[G]-modules.

38



De�nition 3.1.4. A G-module A is trivial if the G-action on A is trivial, which is to say,
every element of G acts on A by the identity map. That is, if we encode the G-action by a
morphism G→ Aut(A), this is the trivial map.

Note that a trivial module need not be the trivial group, despite the confusing terminol-
ogy. Any abelian group A may be viewed as a trivial module over any group G.

De�nition 3.1.5. Let G be a group and let A be a G-module. The set of G-invariants is
the set

AG = {a ∈ A | ga = a ∀g ∈ G}
If there is a morphism of G-modules f : A → B, then the restriction of f to AG maps
into BG, so there is an �induced� map f : AG → BG. Thus the assignment A 7→ AG is a
(covariant) functor from the category of G-modules to the category of abelian groups. (We
could think of AG as a G-module, but the G-action is trivial, so this is not so useful.)

De�nition 3.1.6. Let G be a �nite group. The norm element of Z[G] is

NG =
∑
g∈G

g

Example 3.1.7. Let G = Z/nZ be a �nite cyclic group with a generator σ. The norm
element of Z[G] is

NG = 1 + σ + σ2 + · · ·+ σn−1

De�nition 3.1.8. Let G be a group. The augmentation map is the ring homomorphism
ε : Z[G]→ Z given by ∑

g∈G

agg 7→
∑
g∈G

ag

It is clearly surjective. The augmentation ideal IG is the kernel of ε. Note that IG is the
ideal of Z[G] generated by elements of the form g − 1.

Lemma 3.1.9. Let G be a group.

1. If G is �nite, let NG be the norm element. Then

Z[G]G = ZNG = {mNG | m ∈ Z}

2. If G is in�nite, Z[G]G = 0.

3. If G is �nite, view NG as a map Z[G]→ Z[G]. The kernel of this is IG.

Proof. (1) The inclusion ZNG ↪→ Z[G]G is clear. For the reverse inclusion, suppose x ∈
Z[G]G. Write x as

x =
∑
g∈G

agg

For σ ∈ G, we have

0 = σx− x =
∑
g∈G

agσg −
∑
g∈G

agg =
∑
g∈G

aσ−1gσg −
∑
g∈G

agg =
∑
g∈G

(aσ−1g − ag)g
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Thus aσ−1g−ag = 0 for every σ ∈ G. Since G acts transitively on itself by left multiplication,
all the coe�cients ag must be equal. That is, x ∈ ZNG.
(2) By the same argument as in (1), an element of Z[G]G has all equal coe�cients. Since G is
in�nite, all the coe�cients must then be zero, because only �nitely many nonzero coe�cients
are allowed.
(3) To show IG ⊂ kerNG it su�ces to show that g − 1 ∈ kerNG for all g ∈ G. This is a
simple computation, which we leave to the reader. For the reverse inclusion, let x ∈ kerNG.

x =
∑
g∈G

agg

Then

0 = NGx =
∑
h∈G

h
∑
g∈G

agg =
∑
σ∈G

(∑
hg=σ

ag

)
σ

Thus ∑
hg=σ

ag = 0

for all σ ∈ G. For �xed σ, this sum is equal to
∑

g∈G ag, so
∑

g∈G ag = 0, which is to say,
x ∈ ker ε = IG.

De�nition 3.1.10. Let G be a group and A be a G-module. The set of G-coinvariants is

AG = A/IGA

Note that this is not nearly as important as AG, even though it plays something of a dual
role. Similarly as with AG, a morphism of G-modules f : A → B induces a morphism
AG → BG, making the assignment A 7→ AG into a functor.

3.1.1 The standard resolution of Z
De�nition 3.1.11. Let G be a group and Z a trivial G-module. De�ne di : Z[Gi+1]→ Z[Gi]
by

di(g0, . . . , gi) =
i∑

j=0

(−1)j(g0, . . . , ĝj, . . . , gi)

The standard resolution of Z is

· · · Z[G3] Z[G2] Z[G] Z 0
d2 d1 ε

Note that this is exact (exercise to check), and Z[Gi] is a free Z[G]-module, so this is a
projective resolution of Z in the category of G-modules.

Remark 3.1.12. Warning: Z[Gi] is not the same as Z[G]i. Z[G]i is a free Z[G]-module of
rank i. Z[Gi] is also a free Z[G]-module, but it only has �nite rank if G is �nite, and even
when it has �nite rank, the rank is not necessarily i.
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3.2 De�nitions of group cohomology

We now de�ne our main object of study, the group cohomology groups H i(G,A). Or prefer-
ably, the real object of interest is the functor H i(G,−) which takes A to H i(G,A). We give
several equivalent de�nitions, becuase it is always good to have di�erent ways to think about
the same thing. We won't go into all the details of why these are equivalent.

3.2.1 In terms of a projective resolution of Z
De�nition 3.2.1. Let G be a group, let A be a G-module, and let

· · · → P2 → P1 → P0 → Z→ 0

be a projective resolution of Z as a trivial G-module. We apply the contravariant functor
HomZ[G](−, A) to this and drop the Z term to obtain a chain complex

0→ HomZ[G](P0, A)→ HomZ[G](P1, A)→ HomZ[G](P2, A)→ · · ·

Then we de�ne the ith cohomology group of G with coe�cients in A, denoted
Hi(G,A), to be the ith homology of this chain complex.

Due to various standard results in homological algebra, this is independent of the choice
of projective resolution, and by Proposition 1.4.6 such resolutions exist in the category of
Z[G]-modules. Even better, there is always a free resolution, called the standard resolution,
see De�nition 3.1.11.

This de�nition is computationally approachable in some basic cases which are very important,
most notably the case where G is cyclic, see section 3.3.1.

3.2.2 As derived functor of G-invariants

Now we give an alternate de�nition of H i(G,A) in terms of right derived functors and
injective resolutions.

De�nition 3.2.2. Note that the functor A 7→ AG is left exact (do not waste your time
verifying this directly, we will show it in a minute). We denote this functor by (−)G. Then
we may form its right derived functors, which we denote by H i(G,−). Note that it is
immediate from this de�nition that H0(G,A) ∼= AG.

The previous de�nition is rather hard for someone not familiar with the whole machinery of
derived functors, but this is why we provide a few de�nitions. The functor (−)G is not so
well known, but it turns out to be just another well known functor in disguise, due to the
next lemma.

Lemma 3.2.3. There is a natural isomorphism of (covariant) functors (−)G ∼= HomZ[G](Z,−).
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Proof. For a G-module M , we de�ne a map

ΦM : HomZ[G](Z,M)→MG φ 7→ φ(1)

First note that the image lands in MG because for g ∈ G, φ ∈ HomZ[G](Z,M),

g ·
(
φ(1)

)
= φ(g · 1) = φ(1)

since Z is a trivial G-module. Also note that ΦM is a morphism of abelian groups, because

ΦM(φ+ ψ) = (φ+ ψ)(1) = φ(1) + ψ(1) = ΦM(φ) + ΦM(ψ)

To show that ΦM is an isomorphism, we construct an inverse map

ΨM : MG → HomZ[G](Z,M)
(

ΨM(m)
)

(1) = m

We verify that the composition both ways gives the identity.

ΦMΨM(m) = ΦM(ΨM(m)) =
(

ΨM(m)(1)
)

= m(
ΨMΦM(φ)

)
(1) =

(
ΨM(φ(1))

)
(1) = φ(1)

Thus ΦM is an isomorphism. Finally, to check that ΦM provides an isomorphism of functors,
we verify that the following square commutes for any morphism f : M → N of G-modules.

HomZ[G](Z,M) HomZ[G](Z, N)

MG NG

ΦM

f∗

ΦN

f

where f∗φ = fφ. This is easy to check.

ΦNf∗(φ) = ΦN(fφ) = (fφ)(1) = f(φ(1)) = f(ΦM(1)) = fΦM(φ)

Since Hom(X,−) is left exact for any X, this shows that (−)G is a left exact functor. The
derived functors of Hom are also known by the name Exti, so we can write

H i(G,A) = ExtiZ[G](Z, A)

As noted in the introduction, this characterization has several advantages, notably it implies
the existence of a long exact sequence of cohomology groups associated to a short exact
sequence of G-modules.

Another advantage is that it tells us that we can compute group homology groups using
injective resolutions as well. By Proposition 1.4.6, there is an injective resolution of a G-
module A,

0→ A→ I0 → I1 → · · ·
Then applying the (covariant) functor HomZ[G](Z,−) and dropping the A term we obtain a
chain complex

0→ HomZ[G](Z, I0)→ HomZ[G](Z, I1)→ · · ·
and then the ith homology of this complex is H i(G,A).
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3.2.3 Cohomology via cochains

Finally, we give the most hands-on de�nition of group cohomology using cochains. This
is frequently the �rst de�nition presented, but we put it last to emphasize the categorical
approach of the other de�nitions. The cochain description is frequently very useful in proofs
and especially useful for describing induced maps on cohomology, but it is quite unwieldy to
work with in more complicated situations.

De�nition 3.2.4. Let A be a G module. For i ≥ 0, let

Ci(G,A) =
{
f : Gi → A

}
(These are functions with no additional conditions, in particular they are NOT required to
be group homomorphisms.) Note that Ci(G,A) is an abelian group via pointwise addition.
It is called the group of i-cochains. De�ne di

A : Ci(G,A)→ Ci+1(G,A) by

di(f)(g0, g1, . . . , gi) = g0f(g1, . . . , gi)

+
i∑

j=1

(−1)jf(g0, . . . , gj−2, gj−1gj, gj+1, . . . , gi)

+ (−1)i+1f(g0, . . . , gi−1)

A standard calculation show that di+1di = 0, so the groups Ci(G,A) form a chain complex.
De�ne Zi(G,A) = ker di and Bi(G,A) = im di−1, and Hi(G,A) = Zi(G,A)/Bi(G,A).
Zi(G,A) is the group of i-cocycles, and Bi(G,A) is the group of i-boundaries.

De�nition 3.2.5. A G-module homomorphism α : A → B induces a homomorphism αi :
Ci(G,A) → Ci(G,B), f 7→ αf . Note that this makes Ci(G,−) a (covariant) functor from
G-modules to abelian groups. One can verify that Ci(G,−) is an exact functor.

Note that αi commutes with the di�erentials di, so α induces a morphism of chain com-
plexes α• : C•(G,A)→ C•(G,B).

Ci(G,A) Ci+1(G,A)

Ci(G,B) Ci+1(G,B)

diA

αi αi+1

diB

Thus α induces maps on the homology of the respective chain complexes C•(G,A), C•(G,B).
This is the induced map on group cohomology H i(G,A)→ H i(G,B). We can describe
H i(G,A) → H i(G,B) explicitly as follows: given φ ∈ H i(G,A), choose a representative

φ̃ ∈ ker diA ⊂ Ci(G,A), which is a map Gi → A. The composition αφ̃ : Gi → B is in ker diB,

and the image of φ in H i(G,B) is the class of αφ̃.

Remark 3.2.6. There is a natural isomorphism of functors HomZ[G](Z[Gi+1],−) ∼= Ci(G,−),
and these isomorphisms commute with the di�erentials on the chain complexes HomZ[G](Z[G•+1], A)
and C•(G,A), so they induce natural isomorphisms on homology. This provides the �nal
needed equivalence between the de�nitions of H i(G,A) in terms of cochains with the de�ni-
tion in terms of projective resolutions, but we omit the details.
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3.2.4 Explicit description of cocycles and coboundaries in degrees
0,1,2

Let G be a group and let A be a G-module. We describe H0(G,A), H1(G,A), H2(G,A) as
explicitly as possible in terms of cochains, cocycles, and coboundaries. We already know
that H0(G,A) ∼= AG, but we want to see why this happens in terms of cochains.

First, we describe the boundary maps d0, d1, d2 of the chain complex of cochains. Let
f be a cochain. Depending on the context, f lies in C0(G,A), C1(G,A), or C2(G,A). Let
g0, g1, g2 ∈ G.

(d0f)(g0) = g0f − f
(d1f)(g0, g1) = g0f(g1)− f(g0g1) + f(g0)

(d2f)(g0, g1, g2) = g0f(g1, g2)− f(g0g1, g2) + f(g0, g1g2)− f(g0, g1)

In degree zero, a cochain is a set map f : G0 → A. Since G0 is a point, we identify f with a
point in A. In degree zero, there is no image to quotient out by, so

H0(G,A) = ker d0 = {f ∈ A | g0f = f, ∀g0 ∈ G} = AG

which is good, because we already knew this is what it should be. Perhaps this is an abuse
of the = sign and we should really write ∼=, but whatever. In degree one,

im d0 = {f : G→ A | ∃a ∈ A, f(g0) = g0a− a, ∀g0 ∈ G}
ker d1 = {f : G→ A | f(g0g1) = g0f(g1) + f(g0), ∀g0, g1 ∈ G}

Thus we may describe H1(G,A) as equivalence classes of functions G→ A which satisfy the
cocycle condition f(g0g1) = g0f(g1) + f(g0) with equivalence classes given by considering
functions g 7→ (g − 1)a to be zero.

H1(G,A) =
ker d1

im d0
=
{f : G→ A | f(g0g1) = g0f(g1) + f(g0), ∀g0, g1 ∈ G}
{f : G→ A | ∃a ∈ A, f(g0) = g0a− a, ∀g0 ∈ G}

In particular, we notice that if A is a trivial G-module, then the image of d0 is trivial, since
g0a − a = 0 for all g0 ∈ G, a ∈ A, and the kernel of d1 is the set of group homomorphisms
G→ A, since g0f(g1) = f(g1). Since A is abelian, any group homomorphism G→ A factors
through the abelianization, so we have proved the following proposition.

Proposition 3.2.7. Let G be a group and A be a trivial G-module. Then

H1(G,A) ∼= HomGrp(G,A) = HomZ(Gab, A)

Note that if A is not a trivial G-module, this is far from true.
Degree two is the last place we can reasonably write down the cocycle and coboundary

conditions explicitly and hope to have it be useful (even this is of dubious value).

im d1 =
{
f : G2 → A | ∃f̃ : G→ A, f(g0, g1) = g0f̃(g1)− f̃(g0g1) + f̃(g0), ∀g0, g1 ∈ G

}
ker d2 =

{
f : G2 → A | g0f(g1, g2)− f(g0g1, g2) + f(g0, g1g2)− f(g0, g1) = 0, ∀g0, g1, g2 ∈ G

}
H2(G,A) =

{f : G2 → A | g0f(g1, g2)− f(g0g1, g2) + f(g0, g1g2)− f(g0, g1) = 0, ∀g0, g1, g2 ∈ G}{
f : G2 → A | ∃f̃ : G→ A, f(g0, g1) = g0f̃(g1)− f̃(g0g1) + f̃(g0), ∀g0, g1 ∈ G

}
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3.3 Cohomology for cyclic groups

With our de�nitions in hand, we set out to do some calculations. We should at least be able
to calculate some cohomology groups in simple cases, like when G is uncomplicated (such as
G being cyclic) or when the G-action on A is trivial.

The case of G being cyclic can be done about as explicitly as possible. Somewhat sur-
prisingly, even when G acts trivially on A, H2(G,A) and higher cohomology groups do not
have a very simple description.

3.3.1 Cohomology of a �nite cyclic group

Proposition 3.3.1. Let G = Z/nZ〈σ〉 be a �nite cyclic group of order n with generator σ,
and let A be a G-module. Let

NG =
∑
g∈G

g =
n−1∑
i=0

σi = 1 + σ + · · ·+ σn−1

be the norm element of Z[G], which we also view as a map NG : A→ A. Then

H i(G,A) =


AG i = 0

kerNG/(σ − 1)A i = 1, 3, . . . ,

AG/NGA i = 2, 4, . . .

Proof. We denote NG by N . We have the following periodic projective (actually free) reso-
lution of the trivial G-module Z, where ε is the augmentation map, characterized by σ 7→ 1
and Z-linearity.

· · · Z[G] Z[G] Z[G] Z[G] Z 0N σ−1 N σ−1 ε

It is immediate to check that this is a chain complex, and not terribly hard to check that
it is in fact exact. Then we apply HomZ[G](−, A) and drop the Z term to obtain a complex
whose homology is H i(G,A).

0 HomZ[G](Z[G], A) HomZ[G](Z[G], A) HomZ[G](Z[G], A) · · ·(σ−1)∗ N∗ (σ−1)∗

Since HomZ[G](Z[G], A) ∼= A via φ 7→ φ(1), we have an isomorphism of chain complexes

0 HomZ[G](Z[G], A) HomZ[G](Z[G], A) HomZ[G](Z[G], A) · · ·

0 A A A · · ·

(σ−1)∗

∼=

N∗

∼=

(σ−1)∗

∼=

σ−1 N σ−1

The maps on the bottom row of A's are determined by commutativity of this diagram, and
thinking about the exact description of the isomorphism HomZ[G](Z[G], A) ∼= A says that
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they must be as written. Thus

H i(G,A) =


ker(σ − 1) i = 0

kerN/(σ − 1)A i = 1, 3, . . .

ker(σ − 1)/NA i = 2, 4, . . .

Since the G-action is determined by the action of σ, we see that ker(σ− 1) = AG, hence the
result.

Corollary 3.3.2. Let G = Z/nZ〈σ〉 be a �nite cyclic group and A a trivial G-module. Then

H i(G,A) =


A i = 0

nA i = 1, 3, . . . ,

A/nA i = 2, 4, . . .

where nA is the n-torsion subgroup of A.

Proof. Since A is a trivial module, AG = A, and the norm element just acts by multiplication
by |G| = n on A, and (σ−1)A = 0, so the result is immediate from the previous calculation.

As a somewhat interesting application of the previous calculations, we have a cohomology
calculation for a matrix group.

Proposition 3.3.3. Let p be a prime, and consider M = F2
p (viewed as column vectors)

with the standard action from GL2(Fp) (by left matrix multiplication). For any subgroup
G ⊂ GL2(Fp), H1(G,M) has order 1 or order p. If p = 2, then the order is 1.

Proof. Let Gp ⊂ G be a Sylow p-subgroup. Note that since the order of GL2(Fp) is (p2 −
p)(p2 − 1) = p(p− 1)2(p+ 1), any Sylow p-subgroup has order p or 1.

Because pM = 0, H1(G,M) is a p-torsion group. Since Res : H1(G,M) → H1(Gp,M)
is injective on the p-primary component (Corollary 1.8.24 of Shari� [15]), this says that
Res : H1(G,M)→ H1(Gp,M) is injective.

If Gp = 0, then H1(G,M) = H1(Gp,M) = 0 and there is nothing to prove, so suppose
Gp has order p. Since all p-Sylow subgroups are conjugate, Gp is conjugate in GL2(Fp) to
the cyclic unipotent subgroup U generated by

u =

(
1 1
0 1

)
Then Gp

∼= U so H1(Gp,M) ∼= H1(U,M). So to show that H1(G,M) has order 1 or p, it
su�ces to show that H1(U,M) has order 1 or p (since the restriction map embeds H1(G,M)
into H1(Gp,M) ∼= H1(U,M)). Since U is �ntie cyclic (of order p), by the computation of
cohomology for �nite cyclic groups,

H1(U,M) ∼= kerN/(u− 1)M
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where N = 1 + u+ · · ·+ up−1 ∈ Mat2(Fp) is the norm map. For p odd,

N =

p−1∑
k=0

(
1 k
0 1

)
=

(
p p(p−1)

2

0 p

)
=

(
0 0
0 0

)
= 0

For p = 2,

N =

(
1 0
0 1

)
+

(
1 1
0 1

)
=

(
0 1
0 0

)
So for p odd, kerN = F2

p, and for p even, kerN = Fp = Fpe1, generated (as a U -module) by

e1 =

(
1
0

)
. The other part we need for H1(U,M) ∼= kerN/(u − 1)M is (u − 1)M , which is

Fpe1. Thus we obtain

H1(U,M) =

{
0 p = 2

Fp p > 2

Remark 3.3.4. The previous proof says a little bit more than the proposition asserts. It
says that if p is odd and G ⊂ GL2(Fp) is a Sylow p-subgroup (so it has order p), then
H1(G,M) ∼= Fp ∼= Z/pZ.

It also says that if p does not divide the order of G ⊂ GL2(Fp), then H1(G,M) = 0,
since Gp = 0 and H1(Gp,M) = 0. On the other hand, if p does divide the order of G, all
the proof tells us is that H1(G,M) embeds into H1(Gp,M) = Z/pZ, so H1(G,M) may be
zero or Z/pZ, we don't know for sure. Perhaps other methods exist to sharpen this, but this
proof does not accomplish this.

3.3.2 Cohomology of in�nite cyclic group

After our success with �nite cyclic groups, the in�nite cyclic group seems a likely target for
the next attack.

Lemma 3.3.5. Let G be a group and let ε : Z[G]→ Z be the augmentation map,

ε

(∑
g∈G

agg

)
=
∑
g∈G

ag ag ∈ Z

The kernel of ε is equal to the ideal IG ⊂ Z[G] generated by elements g − 1 for g ∈ G.

Proof. It is clear that for g ∈ G, ε(g−1) = 0 so IG ⊂ ker ε. Conversely, if x =
∑
agg ∈ ker ε,

then

0 = ε

(∑
g∈G

agg

)
=
∑
g∈G

ag =⇒
∑
g∈G

agg =
∑
g∈G

agg −
∑
g∈G

ag =
∑
g∈G

ag(g − 1)

so x ∈ IG.
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Remark 3.3.6. The previous lemma works in a more general setting which we will only
rarely need. Replacing Z with an arbitrary commutative unital ring R, we can form a group
ring R[G], and an augmentation map

ε : R[G]→ R
∑
g∈G

agg 7→
∑
g∈G

ag

Then by the same argument as above, the kernel of ε is exactly the ideal of R[G] generated
by elements g − 1.

Proposition 3.3.7. Let G be an in�nite cyclic group with generator σ. Then

0→ Z[G]
σ−1−−→ Z[G]

ε−→ Z→ 0

is a free resolution of Z as trivial Z[G]-module. Thus

H i(G,A) =


AG i = 0

A/(σ − 1)A i = 1

0 i ≥ 2

Proof. It is clear that ε is surjective. To verify injectivity, suppose x =
∑

g∈G agg =∑
i∈Z aiσ

i ∈ ker(σ − 1). Since σx − x = 0, all the coe�cients of x must be the same.
Since x can have only �nitely many nonzero coe�cients, they must all be zero. Regarding
exactness at the middle term, in the language of the previous lemma, ker ε = IG. Since G is
cyclic, IG is generated by σ − 1, which is to say, IG is the image of σ − 1, so the sequence is
exact.

From this resolution, we apply HomZ[G](−, A) and drop the Z term to obtain a complex
whose homology is H i(G,A). We also have canonical isomorphisms HomZ[G](Z[G], A) ∼= A,
which gives an isomorphic complex whose homology is easier to read o�.

0 HomZ[G](Z[G], A) HomZ[G](Z[G], A) 0

0 A A 0

(σ−1)∗

∼= ∼=

σ−1

From the bottom complex, we read o�

H i(G,A) =


ker(σ − 1) = AG i = 0

A/(σ − 1)A i = 1

0 i ≥ 2

3.4 Long exact sequence of cohomology

We have alluded to the long exact sequence for too long without stating it, so here it is.

48



Theorem 3.4.1. Let G be a group and let 0→ A→ B → C → 0 be a short exact sequence
of G-modules. Then there is a long exact sequence

0→ H0(G,A)→ H0(G,B)→ H0(G,C)→ H1(G,A)→ H1(G,B)→ · · ·

where the maps H i(G,A)→ H i(G,B)→ H i(G,C) are the usual induced maps on cohomol-
ogy.

Proof. Fix a projective resolution P• → Z → 0. Then we have a short exact sequence of
chain complexes

0 0 0

0 HomZ[G](P0, A) HomZ[G](P1, A) HomZ[G](P2, A) · · ·

0 HomZ[G](P0, B) HomZ[G](P1, B) HomZ[G](P2, B) · · ·

0 HomZ[G](P0, C) HomZ[G](P1, C) HomZ[G](P2, C) · · ·

0 0 0

The columns are exact since Pi is a projective Z[G]-module. Note that the homology of the
chain complex rows is exactly H i(G,A), H i(G,B), H i(G,C) by de�nition of group cohomol-
ogy. Thus applying Proposition 1.3.1, we obtain the desired long exact sequence.

Remark 3.4.2. There is an analogous long exact sequence for group homology (this will
make sense only after we de�ne group homology, but it is convenient to talk about this here).
Given a short exact sequence of G-modules 0 → A → B → C → 0, there is a long exact
sequence

· · · → H1(G,C)→ H0(G,A)→ H0(G,B)→ H0(G,C)→ 0

3.5 H2(G,A) and group extensions

We have seen that in degree zero, H0(G,A) is just AG. We also saw that when G acts
trivially on A, H1(G,A) is just Hom(G,A) (Proposition 3.2.7). The next goal is to describe
a somewhat analogous description ofH2(G,A), using something more tangible than cocycles.

De�nition 3.5.1. Let G be a group and A be a G-module. Consider a short exact sequence
of groups

1→ A→ E → G→ 1

By assumption, A has some action ofG. Since A ⊂ E is the kernel of a group homomorphism,
A is a normal subgroup so there is the conjugation action

E × A→ A e · a = eae−1
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which factors through E/A to induce an action(
G ∼= E/A

)
× A→ A e · a = eae−1

We call the exact sequence 1 → A → E → G → 1 an extension of G by A if these two
G-actions coincide.

Example 3.5.2. The previous de�nition is unfortunately cumbersome, but in the case where
A is a trivial G-module we may simplify it greatly. In this case the G-action on A is just

G× A→ A g · a = a

so the requirement for the actions to agree just means that

E × A→ A e · a = eae−1 = a

which is equivalent to saying that the image of A under A→ E is contained in the center of
E.

De�nition 3.5.3. Let G be a group and A be a G-module. Two extensions E,E ′ of G by A
(in the sense of De�nition 3.5.1) are isomorphic if there is an isomorphism of short exact
sequences as depicted below.

1 A E G 1

1 A E ′ G 1

Id ∼= Id

The set of isomorphism classes of such extensions is denoted Ext(G,A). An extension is
split if there is a group homomorphism G→ E so that the composition G→ E → G is the
identity on G (this is equivalent to E being the semidirect product of G and A, utilizing the
G-action on A for the semidirect product).

The set Ext(G,A) has a �natural� structure of an abelian group given by Baer sum, which
we neglect to describe in detail at this time. However, we do note that the identity element
of this group is the isomorphism class of the split extension.

Theorem 3.5.4. Let G be a group and A a G-module. There is an isomorphism of groups
H2(G,A) ∼= Ext(G,A).

Proof. A description of the correspondence as sets (ignoring group structures) is given in
Example 3.2.6 of Gille & Szamuely [4], who also refer the reader to Section 6.6 of Weibel
[16] for more details. A detailed proof and description of Baer sum in the case where A is a
trivial G-module is given in Theorem 4.1.16 of Rosenberg [13].

Corollary 3.5.5. Let G be a group and A a trivial G-module. Then every central extension
of G by A is split if and only if H2(G,A) = 0.

Proof. Immediate consequence of Theorem 3.5.4.
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3.5.1 Application - a special case of the Schur-Zassenhaus theorem

The general Schur-Zassenhaus theorem is the following.

Theorem 3.5.6. Let G be a �nite group with H ⊂ G a normal subgroup with gcd(|H|, |G/H|) =
1. Then G is isomorphic to a semidirect product of H and G/H.

In this section we will use the correspondence between H2 and group extensions to prove
this in the special case where H is abelian (Proposition 3.5.9).

Lemma 3.5.7 (Coprime order makes cohomology trivial). Let G be a �nite group of order
n and A be a G-module which is a �nite abelian group of order m, such that gcd(n,m) = 1.
Then for i ≥ 1,

H i(G,A) = 0

Proof. Since elements ofH i(G,A) are represented by cocycles which are functions Gi → A, it
is clear that H i(G,A) is a �nite group. From the Cor ◦Res composition (Proposition 3.9.17),
we know that H i(G,A) is annihilated by the order of G. It is also clear that a function
Gi → A is annihilated by the order of A. Thus H i(G,A) is annihilated by gcd(n,m) = 1,
which is to say, it is the trivial group.

Remark 3.5.8. Let G be a group with abelian normal subgroup H. The conjugation action
of G on H induces an action of G/H on H, described explicitly by

G/H ×H → H gH · h = ghg−1

where g is any coset representative of gH. Since H is normal, ghg−1 ∈ H. We verify that
this is well de�ned. Let g, g′ ∈ gH, so g−1g′ ∈ H. Then

(g−1g′)h(g−1g′)−1 = h =⇒ ghg−1 = g′h(g′)−1

The equality on the left uses the fact that g−1g′ ∈ H and that H is abelian.

Proposition 3.5.9 (Special case of Schur-Zassenhaus). Let G be a �nite group with H ⊂ G
an abelian normal subgroup with gcd(|H|, |G/H|) = 1. Then G is isomorphic to a semidirect
product of H and G/H.

Proof. Using Remark 3.5.8, H is a G/H-module. Since H is abelian, by the correspondence
between H2 and group extensions, elements of H2(G/H,H) correspond to isomorphism
classes of extensions

1→ H → E → G/H → 1

and furthermore such an extension is split by a group homomorphism G/H → E if and only
if the corresponding class in H2(G/H,H) is trivial, which by the splitting lemma for groups
is equivalent to saying that E is a semidirect product of H and G/H. One obvious choice
of such an extension is

1→ H → G→ G/H → 1

where H ↪→ G is the inclusion and G → G/H is the quotient map. (A little thought
veri�es that this satis�es the compatibility between the two possible G-actions as required
in De�nition 3.5.1.) Since gcd(|H|, |G/H|) = 1, by Proposition 3.5.7, H2(G/H,H) = 0, so
the extension G must correspond to the trivial element, which is to say, it is split and G is
isomorphic to a semidirect product of H and G/H.
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3.6 Group homology

While we are primarily focused on group cohomology, it will be useful to know about group
homology as well. If the reader has heard of Ext functors, they have probably seen Tor as
well. The relationship between group cohomology and group homology is very analoguous
to the relationship between Ext and Tor.

While we could give a longer description of various equivalent de�nitions of group homol-
ogy, the discussion would be much the same in �avor as that for group cohomology. Since
we won't work with homology as much, we shorten the discussion.

3.6.1 De�nition of group homology

De�nition 3.6.1. Let G be a group and A a Z-module. We de�ne

Hi(G,A) = ToriZ[G](Z, A)

H i(G,A) is called the ith homology group of G with coe�cients in A. That is,
Hi(G,−) is the ith right derived functor of the left exact covariant functor −⊗Z[G] A.

Remark 3.6.2. Having de�ned Hi(G,A) in terms of Tor, we have the usual method of com-
putation. Take a projective resolution of Z by G-modules (possibly the standard resolution
3.1.11),

· · · → P1 → P0 → Z→ 0

Apply the (covariant) functor −⊗Z[G] A and drop the Z term to obtain a chain complex

· · · → P2 ⊗Z[G] A→ P1 ⊗Z[G] A→ P0 ⊗Z[G] A→ 0

Then the ith homology of this complex is Hi(G,A) = ToriZ[G](Z, A). Alternatively, since
tensor and Tor are symmetric up to natural isomorphism, we can start with a projective
resolution of A by G-modules,

· · · → P1 → P0 → A→ 0

and apply the (covariant) functor Z⊗Z[G]− and drop the A term to obtain a chain complex
whose homology is also Hi(G,A).

· · · → Z⊗Z[G] P2 → Z⊗Z[G] P1 → Z⊗Z[G] P0 → 0

De�nition 3.6.3. Let A be a G-module. We de�ne AG = A/IGA, that is, the maximal
quotient of A �xed by G. AG is called the group of G-coinvariants. Note that Z[G]G ∼=
Z[G]/IG ∼= Z.
Remark 3.6.4. In analogy with Lemma 3.2.3, there is a natural isomorphism of functors
(−)G ∼= Z⊗Z[G] (−), which means that we could have alternatively de�ned Hi(G,−) as the
right derived functors of (−)G. One consequence of this is that H0(G,A) ∼= AG.

De�nition 3.6.5. The group H2(G,Z) is the Schur multiplier of the group G.

Schur multiplier groups will not be important for the rest of these notes on group cohomology.
We just note this here because of the connection with algebraic K-theory, which is the
following: For a ring R, the Schur multiplier of the matrix group E(R) can be identi�ed with
K2(R), see Corollary 5.5.21.
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3.6.2 Group homology for cyclic group

We essentially repeat the calculation for group cohomology when G is cyclic, except for
homology.

Proposition 3.6.6. Let G be a �nite cyclic group with generator σ and let A be a G-module.
Then

Hi(G,A) =


A/(σ − 1)A i = 0

AG/NGA i = 1, 3, · · ·
kerNG/(σ − 1)A i = 2, 4, · · ·

Proof. We start with the same projective resolution of Z as in the calculation of cohomology
for �nite cyclic G (Proposition ??).

· · · Z[G] Z[G] Z[G] Z 0
σ−1 NG σ−1 ε

then apply (covariant) − ⊗Z[G] A and drop the Z term. Similar to before, we have very
convenient isomorphisms.

· · · Z[G]⊗Z[G] A Z[G]⊗Z[G] A Z[G]⊗Z[G] A 0

· · · A A A 0

σ−1⊗IdA

∼=

NG⊗IdA

∼=

σ−1⊗IdA

∼= ∼=

σ−1 NG σ−1

From this, we read o� the homology and it is exactly what we claimed. Note that ker(σ−1) =
AG.

3.6.3 H1(G,Z) ∼= Gab

There isn't much suspense here - the section title gives it all away. We will give a description
of H1(G,Z) in the case where G is any group, and Z is a trivial G-module. I like to think of
this as a dual/companion result to the isomorphism

H1(G,A) ∼= HomZ(Gab, A)

from Proposition 3.2.7.

Proposition 3.6.7. Let G be a group and view Z as a trivial G-module. Then

H1(G,Z) ∼= IG/I
2
G
∼= Gab

Proof. Consider the short exact sequence of G-modules

0 IG Z[G] Z 0ε

Since Z[G] is a free (hence �at) Z[G]-module, H1(G,Z[G]) = 0, so the low degree part of the
associated long exact sequence on homology is

0 H1(G,Z) H0(G, IG) H0(G,Z[G]) H0(G,Z) 0δ ε∗
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In a more useful form, these terms are

H0(G, IG) = (IG)G = IG/I
2
G

H0(G,Z[G]) = Z[G]G = Z[G]/IG ∼= Z
H0(G,Z) = ZG = Z/IGZ = Z

Since ε vanishes on IG, the induced map ε∗ : Z[G]/IG → Z is an isomorphism. Then by
exactness, the connecting homomorphism δ gives an isomorphism

H1(G,Z) ∼= IG/I
2
G

Now we show IG/I
2
G
∼= Gab. Consider the map

φ : G→ IG/I
2
G g 7→ g − 1

This is a group homomorphism because

φ(gh) = gh− 1 = gh− 1− (g − 1)(h− 1)

= gh− 1− gh+ g + h− 1 = g − 1 + h− 1

= φ(g) + φ(h)

Furthermore, since IG/I
2
G is an abelian group, φ vanishes on the commutator subgroup [G,G]

and induces a homomorphism

φ : Gab → IG/I
2
G g 7→ g − 1

To show this is an isomorphism, we construct an inverse map. Since IG is the free Z-module
generated by elements g − 1 for g ∈ G, the assignment

ψ : IG → Gab g − 1 7→ g

extends to a group homomorphism by Z-linearity. Now note that for g, h ∈ G, we have

(g − 1)(h− 1) = gh− g − h+ 1 = (gh− 1)− (g − 1)− (h− 1)

Applying ψ to both sides of the equation we obtain

ψ
(

(g − 1)(h− 1)
)

= ghg−1h−1

Thus ψ vanishes on I2
G, and induces a map

ψ : IG/I
2
G → Gab g − 1 7→ g

It is clear that φ, ψ are inverses, so Gab ∼= IG/I
2
G.

This gives a nice criterion for a group to be perfect in terms of homology. This turns out to
be useful in the context of algebraic K-theory.

De�nition 3.6.8. A group G is perfect if G = [G,G].

Corollary 3.6.9. A group G is perfect if and only if H1(G,Z) = 0.

Proof. By Theorem 3.6.7, H1(G,Z) ∼= Gab = G/[G,G], so

G = [G,G] ⇐⇒ Gab = 0 ⇐⇒ H1(G,Z) = 0
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3.6.4 Universal coe�cient theorem and Kunneth formula

The next theorem says that the module Z, viewed as trivial G-module, does a lot to �control�
other cohomology groups H i(G,A). So Z is a sort of �universal coe�cient� module.

Theorem 3.6.10 (Universal coe�cient theorem). Let G be a group and A be a trivial G-
module. Then for k ∈ Z≥1, there is a split short exact sequence

0→ Ext1
Z(Hk−1(G,Z), A)→ Hk(G,A)→ HomZ(Hk(G,Z), A)→ 0

Proof. Rosenberg [13] 4.1.13.

Theoretically speaking, the universal coe�cient theorem says that group cohomology
H i(G,A) is entirely determined by group homology (in the case where G acts trivially on
A). Since the sequence is split, the middle term is isomorphic to the direct sum of the outer
terms, which depend only on group homology.

Even more, the module A is mostly irrelevant, since it su�ces to compute group homology
groups with the module Z. The module Z is the group of �universal coe�cients,� whence the
name of the theorem. So one could maybe think that we could forget about group homology,
and just work with groups acting trivially on Z, and see what happens.

While this has some interesting theoretical value, in practice it is still much nicer to
actually work in group cohomology. First of all, not all modules are trivial, in fact, the
primary example we gave in the introduction of a Galois group acting on the top �eld of a
�eld extension is not a trivial module, and this is a central motivating example. Secondly,
group homology and Ext and Hom groups are not necessarily that much easier to calculate
that cohomology groups.

Nevertheless, the universal coe�cient theorem is often useful, especially the fact that the
exact sequence is split. The next corollary provides an example of this.

Corollary 3.6.11. Let G be a group. Then H2(G,A) = 0 for all trivial G-modules A if and
only if Gab is free abelian and H2(G,Z) = 0.

Proof. Consider the split short exact sequence of the universal coe�cient theorem 3.6.10 in
the case k = 2.

0→ Ext1
Z(H1(G,Z), A)→ H2(G,A)→ HomZ(H2(G,Z), A)→ 0

Since this is split, H2(G,A) is isomorphic to the direct sum of the outer terms, so H2(G,A)
vanishes if and only if both outer terms vanish. By Theorem 3.6.7, H1(G,Z) ∼= Gab. Thus

Ext1
Z(H1(G,Z), A) = Ext1

Z(Gab, A)

which vanishes for all A if and only if Gab is a projective Z-module, which is to say, if and
only if Gab is free abelian1. Similarly,

HomZ(H2(G,Z), A)

vanishes for all A if and only if H2(G,Z) = 0.

1Since projective ⇐⇒ free for modules over a PID, such as Z.
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Both the universal coe�cient theorem and the Kunneth formula, which is next, originally
arose in the context of algebraic topology, to the best of my knowledge. They turn out to
be true in the more purely algebraic group cohomology context as well.

Theorem 3.6.12 (Kunneth formula). Let G1, G2 be groups and M an abelian group, viewed
as a trivial module over G1, G2, G1 ×G2. Then

Hn(G1×G2,M) ∼=

(⊕
i+j=n

Hi(G1,M)⊗Hj(G2,M)

)
⊕

( ⊕
i+j=n−1

Tor1
Z

(
Hi(G1,M), Hj(G2,M)

))
Proof. Unfortunately, I do not know a good source for this.

The next computation gives an example usage of the universal coe�cient theorem and Kun-
neth formula.

Proposition 3.6.13 (Rosenberg [13] Exercise 4.1.26). Let G = Z/2Z ⊕ Z/2Z and view Z
as a trivial G-module.

1. H1(G,Z) ∼= Z/2Z⊕ Z/2Z

2. H2(G,Z) ∼= Z/2Z

3. H2(G,Z) ∼= Z/2Z⊕ Z/2Z⊕ Z/2Z
Proof. For (1), we apply the Kunneth formula, and our computation of cohomology for �nite
cyclic groups, and various standard facts about Ext and Tor.

H1

(
(Z/2Z)2,Z

)
∼=
(
H0(Z/2Z,Z)⊗H1(Z/2Z,Z)

)
⊕
(
H1(Z/2Z,Z)⊗H0(Z/2Z,Z)

)
⊕ Tor1

Z

(
H0(Z/2Z,Z)H0(Z/2Z,Z)

)
∼=
(
Z⊗ Z/2Z

)
⊕
(
Z/2Z⊗ Z

)
⊕ Tor1

Z(Z,Z)

∼= (Z/2Z)2

For (2) we again use the Kunneth formula.

H2

(
(Z/2Z)2,Z

)
∼=
(
H0(Z/2Z,Z)⊗H2(Z/2Z,Z)

)
⊕
(
H1(Z/2Z,Z)⊗H1(Z/2Z,Z)

)
⊕
(
H2(Z/2Z,Z)⊗H0(Z/2Z,Z)

)
⊕ Tor1

Z

(
H0(Z/2Z,Z), H1(Z/2Z,Z)

)
⊕ Tor1

Z

(
H1(Z/2Z,Z), H0(Z/2Z,Z)

)
∼= (Z⊗ 0)⊕ (Z/2Z⊗ Z/2Z)⊕ (0⊗ Z)

⊕ Tor1
Z(Z,Z/2Z)⊕ Tor1

Z(Z/2Z,Z)
∼= Z/2Z⊗ Z/2Z
∼= Z/2Z
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For (3), the universal coe�cient theorem gives a split exact sequence

0→ Ext1
Z((Z/2Z)2,Z/2Z)→ H2(V,Z/2Z)→ HomZ(Z/2Z,Z/2Z)→ 0

Clearly HomZ(Z/2Z,Z/2Z) ∼= Z/2Z. By a well-known computation, the Ext term is

Ext1
Z((Z/2Z)2,Z/2Z) ∼= Ext1

Z(Z/2Z,Z/2Z)⊕ Ext1
Z(Z2/Z,Z/2Z) ∼= (Z/2Z)2

Thus we have a split exact sequence

0→ (Z/2Z)2 → H2(V,Z/2Z)→ Z/2Z)→ 0

hence H2(V,Z/2Z) ∼= (Z/2Z)3.

3.7 Tate cohomology of �nite groups

In the case where G is �nite, we can combine all of the information of group cohomology
and group homology into one in�nite sequence of cohomology groups, which are called Tate
cohomology groups, and denote Ĥ i(G,A). Let me repeat for emphasis: the Tate cohomology
groups will only be de�ned when G is �nite. It is meaningless to talk about Tate cohomology
when G is in�nite.

For i ≥ 1, they are the same as group cohomology groups. For i ≤ 1, they are the
same as group homology groups. In degrees −1, 0, we make some special de�nitions, which
seem somewhat unmotivated at �rst. It is not immediately clear that these are the �right�
de�nitions. But eventually some of the theorems begin to show how the de�nitions in degree
−1 and 0 couldn't be anything else to make the theory hang together.

Perhaps the simplest motivation for the de�nition is that of a cyclic group. Recall that
if G is �nite cyclic, then the groups H i(G,A) are 2-periodic, starting with i = 1 and i = 2.

H1(G,A) ∼= H3(G,A) ∼= · · · H2(G,A) ∼= H4(G,A) ∼= · · ·

One way to think of Tate cohomology groups in degrees zero and one is that they are de�ned
so that this pattern continues in degrees zero and one. So (in the case of G being �nite
cyclic) we want

Ĥ−1(G,A) ∼= H1(G,A) ∼= H3(G,A) ∼= · · · Ĥ0(G,A) ∼= H2(G,A) ∼= H4(G,A) ∼= · · ·

3.7.1 De�nition of Tate cohomology

De�nition 3.7.1. Let G be a �nite group, and let

NG =
∑
g∈G

g ∈ Z[G]

be the norm element. Let A be a G-module, and view NG as a map A → A. The image
lands in AG, since for σ ∈ G, σNG = NG. Also, NG vanishes on IG since (σ − 1)(NG) = 0.
Thus NG induces a map

NG : AG → AG
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We de�ne
Ĥ0(G,A) = kerNG Ĥ0(G,A) = cokerNG

making an exact sequence

0 Ĥ0(G,A) AG AG Ĥ0(G,A) 0
NG

Remark 3.7.2. If A is a trivial module, then AG = AG = A and NG : A → A is just
multiplication by n = |G|. Hence in this case

Ĥ0(G,A) = A/nA Ĥ0(G,A) = nA

where nA denotes the n-torsion subgroup of A.

De�nition 3.7.3. Let G be a �nite group and let A be a G-module. For i ∈ Z, the ith
Tate cohomology group of G with coe�cients in A is

Ĥ i(G,A) =


H−i−1(G,A) i ≤ −2

Ĥ0(G,A) i = −1

Ĥ0(G,A) i = 0

H i(G,A) i ≥ 1

Here is the same information in a possibly more accessible format.

−3 −2 −1 0 1 2

Ĥ−3 Ĥ−2 Ĥ−1 Ĥ0 Ĥ1 Ĥ2

H2 H1 Ĥ0 Ĥ0 H1 H2

That is, the Tate cohomology groups combine the information of homology and cohomology
groupsH i(G,A), Hi(G,A) into one series, with theH0, H0 terms replaced. They are replaced
so that we get a two-tailed long exact sequence, see Theorem 1.6.6 of Shari� [15].

Remark 3.7.4. Since we can already compute Hi(G,A) and H i(G,A) using projective

resolutions, we can already compute Ĥ i by these same resolutions, except in the cases of
i = −1, 0. And we can describe Ĥ−1 = Ĥ0 and Ĥ0 in terms of the norm map.

But even better, we can actually �stitch together� projective resolutions used to compute
H i, Hi respectively, and join them in the middle with two extra terms that have Ĥ0 and Ĥ

0

as homology. This lets us compute Tate cohomology via a doubly-in�nite projective exact
sequence and resulting chain complex, see Theorem 3.7.6 for details.

De�nition 3.7.5. Let G be a �nite group, and A a G-module. We de�ne the following
shorthand for orders of Tate cohomology groups.

hk(G,A) = |Ĥk(G,A)|

Often the group G is understood, and this is abbreviated to hk(A). If both h0(A) and h1(A)
are �nite, the Herbrand quotient of A is

h(A) =
h0(A)

h1(A)

This is usually only talked about when G is cyclic (since in this case we will soon show that

Ĥ i = Ĥ i+2), though the de�nition makes sense in general.
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There are a lot of results about Herbrand quotients, such as when one can say they are
�nite, and so on. We won't use this sort of thing much, so we leave it to the reader to �nd
another source for that kind of thing.

3.7.2 Doubly in�nite resolution for Tate cohomology

As we already motivated, Tate cohomology is the �right� way to stich together group ho-
mology and cohomology for a �nite group into a doubly in�nite sequence of invariants. It
captures all of the homology and cohomology groups except H0(G,A) and H0(G,A), instead

replacing them with Ĥ0(G,A) and Ĥ−1(G,A).
Perhaps the main justi�cation that this is the �right� way to replace the zero degree groups

is the following result, which says that we can also stitch together projective resolutions in
the right way to give Ĥ i(G,A) groups as the homology of a doubly in�nite chain complex.

Theorem 3.7.6. Let G be a �nite group. Let P• → Z→ 0 be a projective resolution of Z as
a trivial G-module, with Pi of �nite Z-rank. Let P ∗i = HomZ(Pi,Z), and de�ne a G-action
on Pi by (g · φ)(x) = φ(g−1x). Consider the exact sequence

· · · → P1 → P0 → P ∗0 → P ∗1 → · · ·

Let A be a G-module. Then the Tate cohomology group Ĥ i(G,A) is the ith homology of the
chain complex

· · · → HomZ[G](P
∗
1 , A)→ HomZ[G](P

∗
0 , A)→ HomZ[G](P0, A)→ HomZ[G](P1, A)→ · · ·

Proof. Shari� [15] Theorem 1.6.10.

Remark 3.7.7. In the preceeding theorem, the map P0 → P ∗0 is the composition of P0 → Z
and Z→ P ∗0 coming from the projective resolution P• → Z. In the resulting chain complex,

P0 is the 0th degree term, that is, Ĥ0(G,A) is the homology at the HomZ[G](P0, A) term,

and Ĥ1(G,A) is the homology at the HomZ[G](P1, A) term, and so on.

3.7.3 Computation of Tate cohomology of �nite cyclic group

We can repeat the essential ideas of the calculation in Section 3.3.1 to compute Tate coho-
mology of any G-module A in the case where G is a �nite cyclic group.

One way to see this is by Theorem 3.7.6, though we give an even simpler argument. The
end result is that the groups Ĥ i(G,A) are again periodic of order 2, except even better,
because the pattern continues in degrees zero and one.

Proposition 3.7.8 (Tate cohomology of a �nite cyclic group). Let G be a �nite cyclic group
with generator σ and let A be a G-module. Then

Ĥ i(G,A) =

{
kerNG/(σ − 1)A i = . . . ,−3,−1, 1, 3, . . .

AG/NGA i = . . .− 2, 0, 2, 4, . . .

Proof. We already know this for i ≥ 1 by Proposition 3.3.1. We also already know this for
i ≤ −1 by Proposition 3.6.6. For i = −1, 0, these are the right Tate cohomology groups
essentially by de�nition of Tate cohomology in degrees −1, 0.
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3.7.4 Tate's theorem

The next goal is to prove Theorem 3.7.10. It's hard at �rst to see why this theorem is
interesting - the hypotheses ask an awful lot to be true, and it's not very clear why they
would ever be true in a concrete example. But they are, as Remark 3.7.11 describes.

Perhaps it would be best to read the statement of Tate's theorem �rst, then the remark,
and only then try to read the proof. Not because the proof really involves understanding
the remark, but because the remark explains why the theorem is useful to begin with. But
of course, the reader is a strong indepedent person and they can read this in whatever order
they choose.

Before Tate's theorem, though, we need a lemma, for which we give a only a halfhearted
proof.

Theorem 3.7.9. Let G be a �nite group and let A be a G-module. Suppose that for all
subgroups H ⊂ G,

Ĥ1(H,A) = Ĥ2(H,A) = 0

Then Ĥ i(G,A) = 0 for all i ∈ Z.

Proof. Theorem 3.10 of Milne [9]. As a rough outline, this is clear if G is cyclic by the
calculation of section 3.7.3. Using this, one proves the result for solvable groups by an
inductive process. Then using that, the result is proved for a general group by considering
Sylow subgroups of G.

Theorem 3.7.10 (Tate's theorem). Let G be a �nite group and A a G-module. Suppose
that for all subgroups H ⊂ G that

1. Ĥ1(H,A) = 0.

2. Ĥ2(H,A) is cyclic of order |H|.

Then a choice of generator γ of H2(G,A) induces isomorphisms

Ĥ i(G,Z)→ Ĥ i+2(G,A)

for all i ∈ Z.

Proof. We begin with an outline of the proof (from Milne [9]).

1. Construct the G-module Aφ.

2. Describe relevant short exact sequence involving Aφ.

0 A Aφ IG 0ι

3. Show that ι∗ : H2(H,A)→ H2(H,Aφ) is the zero map for any subgroup H.

4. For a subgroup H ⊂ G, extract information from long exact sequence on Ĥ i(H,−)
associated to

0→ IG → Z[G]→ Z→ 0
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5. For a subgroup H ⊂ G, using the long exact sequence on Ĥ i(H,−) associated to the
Aφ short exact sequence, conclude that

H1(H,Aφ) = H2(H,Aφ) = 0

6. Use Theorem 3.7.9 to conclude that H i(G,Aφ) = 0 for all i. Use this to obtain the
desired isomorphism.

(Step 1) Let φ : G2 → A be a cocycle representing our chosen generator γ. Let F be the
free abelian group generated by symbols xσ for σ ∈ G, σ 6= 1, and set

Aφ = A⊕ F

We give Aφ a G-module structure by

σxτ = xστ − xσ + φ(σ, τ)

for σ, τ ∈ G and setting x1 = φ(1, 1) ∈ A. We need to check that (ρσ)xτ = ρ(σxτ ) for
ρ, σ, τ ∈ G to verify this is a G-action.

(ρσ)xτ = xρστ − xρσ + φ(ρσ, τ)

ρ(σxτ ) = ρ(xστ − xσ + φ(σ, τ))

= xρστ − xρ + φ(ρ, στ)−
(
xρσ − xρ + φ(ρ, σ)

)
+ ρφ(σ, τ)

= xρστ − xρ + φ(ρ, στ)− xρσ + xρ − φ(ρ, σ) + ρφ(σ, τ)

Thus these are equal if and only if

φ(ρσ, τ) = φ(ρ, στ)− φ(ρ, σ) + ρφ(σ, τ)

which is precisely the cocycle condition.
(Step 2) De�ne

α : Aφ → IG

a 7→ 0

xσ 7→ σ − 1

where a ∈ A, σ ∈ G, σ 6= 1. This is a G-module homomorphism because

σα(xτ ) = σ(τ − 1) = στ − σ = α(xστ − α(xσ) + α(φ(σ, τ))

Clearly A = kerα, so we have a short exact sequence of G-modules, where ι : A ↪→ Aφ is the
inclusion into the �rst component.

0 A Aφ IG 0ι α

(Step 3) For any subgroup H ⊂ G, we know that Cor Res : H2(G,A) → H2(G,A) is

multiplication by [G : H] = |G|
|H| (Proposition 3.9.17). Hence Cor Res γ has order |H|, so
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Res γ ∈ H2(H,A) has order at least |H|. Since H2(H,A) is cyclic of order |H|, this just says
that Res γ is a generator of H2(H,A). Now consider the 1-cochain

f : G→ Aφ σ 7→ xσ

which represents an element of H1(G,Aφ). Then

(df)(σ, τ) = σf(τ)− f(στ) + f(σ) = σxτ − xστ + xσ = ι ◦ φ(σ, τ)

Hence ι ◦ φ is a coboundary, which is to say,

ι∗γ = ι∗[φ] = [ι ◦ φ] = 0 ∈ H2(G,Aφ)

Since γ generates H2(G,A), this says that ι∗ : H2(G,A)→ H2(G,Aφ) is the zero map. Then
since Res γ generates H2(H,A) and using commutativity of the following diagram, the map
ι∗ : H2(H,A)→ H2(H,Aφ) is trivial for any subgroup H ⊂ G.

H2(G,A) H2(G,Aφ)

H2(H,A) H2(H,Aφ)

ι∗=0

Res Res

ι∗

(Step 4) Let H ⊂ G be any subgroup. Since Z[G] is a free (hence projective) Z[H]-module
(Lemma 3.8.4), for all i ∈ Z, we have

Ĥ i(H,Z[G]) = 0

Then from the long exact sequence on Tate cohomology associated to 0 → IG → Z[G] →
Z→ 0, the connecting homomorphisms give isomorphisms

Ĥ i(H,Z)→ Ĥ i+1(H, IG)

In particular,

H1(H, IG) ∼= Ĥ0(H,Z) ∼= Z/|H|Z Proposition ??

H2(H, IG) ∼= H1(H,Z) ∼= Hom(H,Z) Proposition 3.2.7

= 0 because H is �nite

(Step 5) Let H ⊂ G be any subgroup. Now we consider the long exact sequence on
cohomology associated to 0→ A→ Aφ → IG → 0. (We could use Tate cohomology or not,
they are the same in this case.)

H1(H,A) H1(H,Aφ) H1(H, IG) H2(H,A) H2(H,Aφ) H2(H, IG)

0 Z/|H|Z Z/|H|Z 0

∼= ∼= ∼=
0

∼=

The various isomorphisms come from our hypotheses and Step 4. The map H2(H,A) →
H2(H,Aφ) is zero by Step 3, so by exactness H1(H, IG) → H2(H,A) is surjective. Since
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they are �nite groups of the same order, this implies it is an isomorphism. Then by exactness,
H1(H,Aφ) = 0. Also by exactness, H2(H,Aφ) = 0.

(Step 6) By Step 5, the hypotheses of Theorem 3.7.9 are satis�ed, so Ĥ i(G,Aφ) = 0

for all i ∈ Z. Thus the connecting homomorphisms in the long exact sequence on Ĥ i(G,−)
associated to 0→ A→ Aφ → IG → 0 are isomorphisms. Composing this with the connecting
isomorphisms of Step 4, we obtain the desired isomorphisms.

Ĥ i(G,Z) Ĥ i+1(G, IG) Ĥ i+2(G,A)
∼= ∼=

Remark 3.7.11. The hypotheses that Ĥ1(H,A) = 0 and Ĥ2(H,A) is cyclic of order |H|
for all subgroups seems so strong that it would not arise very often in useful circumstances.
However, it does occur in the following important situation which is central to local class
�eld theory.

Let K be a complete nonarchimedean discretely valued local �eld (such as Qp), and let
L/K be a �nite extension. Let G = Gal(L/K) and A = L×, so A is a G-module. By Galois
theory, all subgroups H ⊂ G are of the form Gal(L/E) where K ⊂ E ⊂ L is an intermediate
sub�eld. By Hilbert 90,

Ĥ1(H,A) = H1(Gal(L/E), L×) = 0

and by Corollary 4.6.37,

Ĥ2(H,A) = H2(Gal(L/E), L×) ∼= Z/mZ

where m = [L : E] = |H|. Thus, all the hypotheses of Tate's theorem are satis�ed in this
situation.

The following slightly di�erent statement (and very di�erent proof) of Tate's theorem is
given in section 1.12 (in particular, Theorem 1.12.3) of Shari� [15].

Theorem 3.7.12 (Tate's theorem). Let G be a �nite group and let A be a G-module. For
each prime p, �x a Sylow p-subgroup Gp ⊂ G. Let α ∈ H2(G,A). Suppose that for every p,
H1(Gp, A) = 0 and H2(Gp, A) is cyclic of order |Gp| generated by Resα. Then for i ∈ Z we
have isomorphisms

Ĥ i(G,Z)→ Ĥ i+2(G,A) β 7→ (Resα) ∪ β

The hypotheses of this version are essentially the same, the main di�erence is that the
isomorphisms constructed as a composition of connecting homomorphisms in the Milne proof
are instead manifested as cup products with some element. This is often a very important
aspect of application of the theorem. Unfortunately, we do not include the proof of this
version here. See section 1.12 of Shari� [15] for details.
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3.8 Dimension shifting

Dimension shifting is a very powerful technique for group cohomology and homology. It
allows one to de�ne/construct maps on all homology groups just by de�ning them in one
degree, often degree zero since that's where things are very concrete.

The price for this is that the higher degree versions of the maps are often very di�cult to
compute explicitly. But the bene�t of the construction is that such maps are �compatible�
with all of morphisms involved in the long exact sequences, in the sense that certain squares
commute, even squares involving the connecting homomorphisms.

This is excellent because the connecting homomorphisms have much the same problem
- they were constructed via snake lemma, so they aren't convenient to describe simply in
terms of elements. The whole thing has a very categorical �avor.

3.8.1 Induced and coinduced modules

Before we can do any dimension shifting, we need to develop some tools, primarily induced
and coinduced modules and some important short exact sequences involving them. This will
build up to Shapiro's lemma 3.8.10, which tells us that homology and cohomology groups
always vanish for induced and coinduced modules. From there, dimension shifting will be
an immediate corollary.

De�nition 3.8.1. Let H ⊂ G be a subgroup, and let A be an H-module. The induced
module associated to A is

IndGH(A) = Z[G]⊗Z[H] A

This is a G-module via the action

g(x⊗ a) = (gx)⊗ a

where g ∈ G, x ∈ Z[G], a ∈ A. If A is any abelian group, then it is a module over the trivial
subgroup, so there is an induced module

IndG(A) = IndG{1}(A) = Z[G]⊗Z A

Any G-module which is isomorphic to IndG(A) for some A is called an induced module.

De�nition 3.8.2. Let H ⊂ G be a subgroup, and let A be an H-module. The coinduced
module associated to A is

CoIndGH(A) = HomZ[H](Z[G], A)

This is also sometimes denoted MG
H (A). This is a G-module via the action

(g · φ)(x) = φ(xg)

where g ∈ G, x ∈ Z[G], φ ∈ CoIndGH(A). As in the case of induced modules, the case where
H is the trivial subgroup is of particular importance, and it is written

CoIndG(A) = HomZ(Z[G], A)

and any G-module isomorphic to CoIndG(A) for some A is called a coinduced module.
CoIndG(A) is also sometimes written MG(A).
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Lemma 3.8.3. A direct sum of induced (coinduced) modules is induced (coinduced).

Proof. For induced modules, this follows from the fact that tensor products distribute over
arbitrary direct sums. For coinduced modules, this follows that arbitrary direct sums in the
2nd variable of Hom pull out as arbitrary direct sums. (Note that for Hom, an in�nite direct
sum in the �rst variable pulls out as a direct product, but this does not a�ect us at the
moment.)

The next lemma we could have proved a long time ago right after de�ning group rings, but
we didn't need it so we put it o� until now.

Lemma 3.8.4. Let H ⊂ G be a subgroup. Then Z[G] is a free Z[H]-module of rank [G : H].

Proof. To clarify, the action of Z[H] on Z[G] is just left multiplication in Z[G]. Let {σi : i ∈ I}
be a set of right coset representatives for H. Let x ∈ Z[G] be arbitrary, written uniquely as

x =
∑
g∈G

mgg ∈ Z[G] mg ∈ Z

Since the cosets Hσi partition G, we can rewrite this as∑
g∈G

mgg =
∑
i∈I

∑
g∈Hσi

mgg

For g ∈ Hσi, we can write it as g = hgσi for a unique hg ∈ H. Then we write the above
uniquely as ∑

i∈I

∑
g∈Hσi

mgg =
∑
i∈I

∑
g∈G

mghgσi =
∑
i∈I

( ∑
g∈Hσi

mghg

)
σi

Thus the σi form a Z[H]-spanning set for Z[G], of size [G : H]. They are also linearly
independent, as

∑
i∈I

( ∑
g∈Hσi

mghg

)
σi = 0 =⇒ mg = 0, ∀g =⇒

∑
g∈Hσi

mghg = 0, ∀i

Lemma 3.8.5. The functor CoIndGH(−) is exact.

Proof. By de�nition, CoIndGH(−) = HomZ[H](Z[G],−). By Lemma 3.8.4, Z[G] is a free
Z[H]-module, hence projective, so HomZ[H](Z[G],−) is exact.

3.8.2 Induced/coinduced isomorphism for �nite index subgroups

In general the induced and coinduced modules for a given G-module A are not the same,
IndGH(A) 6∼= CoIndGH(A). However, if H is �nite index, they are.

This section is not critically important for dimension shifting, so the reader could rea-
sonably skip this section and go directly to section 3.8.3.
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Proposition 3.8.6. Let H ⊂ G be a subgroup of �nite index, and let A be an H-module.
There is a canonical isomorphism of G-modules

χ : CoIndGH(A)→ IndGH(A) φ 7→
∑

gH∈G/H

g−1 ⊗ φ(g)

where g is any coset representative for gH. More precisely, let n = [G : H], and let
g1H, . . . , gnH be a set of left coset representatives, then

χ(φ) =
n∑
i=1

g−1
i ⊗ φ(gi)

where the right hand side does not depend on the choice of coset representatives. (In fact,
each term g−1

i ⊗ φ(gi) does not depend on the choice of gi ∈ giH.)

Proof. First, we show that each term g−1 ⊗ φ(g) does not depend on the choice of coset
representative g ∈ gH. If g′ = gh is a di�erent coset represenative for gH, then using
Z[H]-linearity we get

((g′)−1)⊗ φ(g′) = (gh)−1 ⊗ φ(gh) = h−1g−1 ⊗ hφ(g) = g ⊗ φ(g)

thus the terms in the sum de�ning χ(φ) do not depend on the choice of coset representatives.
We verify that χ is a G-module homomorphism. Let g ∈ G, φ ∈ CoIndGH(A).

χ(gφ) =
n∑
i=1

g−1
i ⊗ (gφ)(gi) =

n∑
i=1

g−1
i ⊗ φ(gig) =

n∑
i=1

g ·
(
g−1g−1

i ⊗ φ(gig)
)

= g
n∑
i=1

(gig)−1 ⊗ φ(gig) = gχ(φ)

The �nal equality comes from the fact that if g1, . . . , gn are coset representatives for H,
then gg1, . . . , ggn are another set of coset representatives for H. Now we show that χ is an
isomorphism. It is relatively easy to see that χ has trivial kernel, since if

χ(φ) =
∑

gH∈G/H

g−1 ⊗ φ(g) = 0

then each term must be zero (since none of the g−1 are equal, the terms are linearly inde-
pendent), hence φ(g) = 0 for each g. Since this is independent of representative, φ(g) = 0
for all g ∈ gH, and since G is covered by the cosets, φ is the zero map. Hence χ is injective.

To show that χ is surjective, we note that IndGH(A) = Z[G] ⊗Z[H] A is generated by
elements of the form x ⊗ a where x ∈ Z[G], a ∈ A, so it is su�cient to show that such
elements lie in the image of χ. If we �x a set of coset representatives g1, . . . , gn for H, then
g−1

1 , . . . , g−1
n are also coset representatives, and by Lemma 3.8.4 x can be written uniquely

as

x =
n∑
i=1

yig
−1
i
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where yi ∈ Z[H]. Then de�ne

φ : Z[G]→ A φ(gi) = yia

This de�nes φ on one element of each coset of G, and extending by Z[H]-linearity this extends
to de�ne φ on all of Z[G], hence φ ∈ CoIndGH(A). Furthermore,

χ(φ) =
n∑
i=1

g−1
i ⊗ φ(gi) =

n∑
i=1

g−1
i ⊗ yia =

n∑
i=1

yig
−1
i ⊗ a =

(
n∑
i=1

yig
−1
i

)
⊗ a = x⊗ a

Thus χ is surjective. This completes the proof that χ is an isomorphism.

Remark 3.8.7. In particular, the previous result holds in the case where G is a �nite group
and H is the trivial subgroup, so for �nite G, we have

CoIndG(A) ∼= IndG(A)

In the case where G is �nite, the isomorphism of the previous theorem is simpler, since there
is no issue of coset representatives (the cosets of the trivial subgroup are just the elements
of G).

χ : CoIndG(A)→ IndG(A) φ 7→
∑
g∈G

g−1 ⊗ φ(g)

3.8.3 Shapiro's lemma

The following isomorphism is really just a disguised version of a speci�c case of the tensor-
hom adjunction, but we spell things out in gory detail. The main purpose of this lemma is
to use it to prove Shapiro's lemma.

Lemma 3.8.8 (Tensor-hom adjunction). Let H ⊂ G be a subgroup, let A be a G-module,
and let B be an H-module. Then

ψAB : HomZ[G](A,CoIndGH(B))→ HomZ[H](A,B)
(
ψAB(α)

)
(a) =

(
α(a)

)
(1)

is an isomorphism of abelian groups. Furthermore, this gives a natural isomorphism of
bifunctors

HomZ[G](−,CoIndGH(−)) ∼= HomZ[H](−,−)

Explicitly, being a natural isomorphism means that for any morphism η : A → A′ of G-
modules and any morphism χ : B → B′ of H-modules, the folllowing two squares commute.

HomZ[G](A
′,CoIndGH(B)) HomZ[G](A,CoIndGH(B))

HomZ[H](A
′, B) HomZ[H](A,B)

HomZ[G](A,CoIndGH(B)) HomZ[G](A,CoIndGH(B′))

HomZ[H](A,B) HomZ[H](A,B
′)

f 7→fη

ψA
′

B
∼= ψAB

∼=

f 7→fη

ψAB
∼= ψA

B′
∼=

f 7→χf
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To describe the upper arrow on the bottom square, we �rst note that the induced map
CoIndGH(B)→ CoIndGH(B′) is f 7→ χf , and then the map on Homs is

α 7→
(

(f 7→ χf) ◦ α
)

Proof. For simplicity, denote ψAB by ψ. Throughout,

a ∈ A h ∈ H α ∈ HomZ[G](A,CoIndGH(B)) β ∈ HomZ[H](A,B)

First we verify that ψ lands in HomZ[H](A,B), so we check that for α ∈ HomZ[G](A,CoIndGH(B)),
the map ψ(α) is H-linear.(

ψ(α)
)

(ha) =
(
α(ha)

)
(1) =

(
hα(a)

)
(1) =

(
α(a)

)
(h) = h

((
α(a)

)
(1)
)

= h
((
ψ(α)

)
(a)
)

Thus ψ(α) is H-linear, so ψ lands in the correct target. Now we de�ne a map which we will
show to be the inverse of ψ.

φ : HomZ[H](A,B)→ HomZ[G](A,CoIndGH(B))
((
φ(β)

)
(a)
)

(1) = β(a)

where β ∈ HomZ[H](A,B) and a ∈ A. We have de�ned φ(β)(a) only on 1 ∈ Z[G], and then
extend by G-linearity, so we do not have check that φ(β)(a) is Z[H]-linear. We don't need
to verify that φ is a group homomorphism, since the inverse to a group homomorphism (if
it exists) is a group homomorphism. Now we check that φ, ψ are inverses.(

(ψφ)(β)
)

(a) =
(
ψ
(
φ(β)

))
(a) =

((
φ(β)

)
(a)
)

(1) = β(a)

which is to say (ψφ)(β) = β, hence ψφ = Id. For the composition in the other order, �rst
we note that

(φψ)(α) = α ⇐⇒
(

(φψ)(α)
)

(a) = α(a) ∀a ∈ A

⇐⇒
((
φψ)(α)

)
(a)
)

(1) =
(
α(a)

)
(1) ∀a ∈ A

so to show φψ = Id, it su�ces to verify the last condition, which we do. For a ∈ A, we have(
(φψ)(α)

)
(1) =

((
φ
(
ψ(α)

))
(a)

)
(1) =

(
ψ(α)

)
(a) =

(
α(a)

)
(1)

Thus φψ = Id, so φ, ψ are inverses. Now we show that the isomorphisms ψAB provide a
natural transformation by proving commutativity of the two squares above, starting with
the upper square.(

ψAB(fη)
)

(a) =
(
fη(a)

)
(1) =

(
f
(
η(a)

))
(1) =

(
ψA
′

B (f)
)(
η(a)

)
=
((
ψA
′

B (f)
)
◦ η
)

(a)

This proves commutativity of the top square. For the lower square, going around the bottom
we obtain (

χψAB(α)
)

(a) = χ
((
ψAB(α)

)
(a)
)

= χ
((
α(a)

)
(1)
)
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and going around the top, we have(
ψAB′
(

(f 7→ χf) ◦ α
))

(a) =

((
(f 7→ χf) ◦ α

)
(a)

)
(1) = χ

((
α(a)

)
(1)
)

Thus both squares commute as claimed.

Just one more lemma before Shapiro's lemma. It's a bit strange that a lemma requires so
many other lemmas to prove. Oh well.

Lemma 3.8.9 (CoInd preserves injectives). If I is an injective H-module, then CoIndGH(I)
is an injective G-module.

Proof. Let I be an injective H-module. We use the characterization that I is injective if and
only if the functor HomZ[H](−, I) is exact, so to show CoIndGH(I) is injective, we show that
the functor HomZ[G](−,CoIndGH(I)) is exact.

Let 0 → A → B → C → 0 be a short exact sequence of G-modules, which we can also
view as H-modules by restricting the action. To show that HomZ[G](−,CoIndGH(I)) is exact,
we need to show that the image of 0 → A → B → C → 0 under this functor is exact. By
the �rst commutative square of Lemma 3.8.8, we have the following commutative diagram
(of abelian groups).

0 HomZ[H](C, I) HomZ[H](B, I) HomZ[H](A, I) 0

0 HomZ[G](C,CoIndGH(I)) HomZ[G](B,CoIndGH(I)) HomZ[G](A,CoIndGH(I)) 0

∼= ∼= ∼=

By injectivity of I, the top row is exact. Since the vertical maps are isomorphisms, we
have an isomorphism of chain complexes, hence exactness of the top implies exactness of the
bottom. Thus CoIndGH(I) is an injective G-module.

Proposition 3.8.10 (Shapiro's lemma). Let H ⊂ G be a subgroup. There are natural
isomorphisms of functors

H i(H,−) ∼= H i(G,CoIndGH(−))

Hi(H,−) ∼= Hi(G, IndGH(−))

for all i ≥ 0.

Proof. We only prove the isomorphism for cohomology on the level of groups, and omit
the details of the natural isomorphism of functors. Let A be an H-module, and choose an
injective resolution of A by H-modules.

0→ A→ I0 → I1 → · · ·

Since H i(H,−) is the ith right derived functor of (−)H , H i(H,A) is the ith cohomology of
the following complex.

0→ IH0 → IH1 → · · ·
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On the other hand, if we apply the functor CoIndGH(−) to our injective resolution of A, by
Lemmas 3.8.5 and 3.8.9 we get an injective resolution of CoIndGH(A).

0→ CoIndGH(A)→ CoIndGH(I0)→ CoIndGH(I1)→ · · ·

Then since H i(G,−) is the ith right derived functor of (−)G, H i(G,CoIndGH(A)) is the ith
cohomology of the complex

0→ CoIndGH(I0)G → CoIndGH(I1)G → · · · (3.8.1)

Note that
CoIndGH(Ik)

G = HomZ[H](Z[G], Ik)
G ∼= HomZ[H](Z, Ik)

so we may replace the resolution 3.8.1 by the resolution

0→ HomZ[H](Z, I0)→ HomZ[H](Z, I1)→ · · ·

Finally, applying the natural isomorphism of Lemma 3.2.3, we get an isomorphism of chain
complexes

0 IH0 IH1 · · ·

0 HomZ[H](Z, I0) HomZ[H](Z, I1) · · ·

∼= ∼=

which induces isomorphisms on homology,

H i(H,A) ∼= H i(G,CoIndGH(A))

The most important corollary of Shapiro's lemma is that induced and coinduced modules
have trivial homology groups for i ≥ 1, as the next corollary spells out.

Corollary 3.8.11. Let G be a group, and A a G-module. Then

H i(G, IndG(A)) = 0 Hi(G,CoIndG(A)) = 0

for all i ≥ 1.

Proof. Let H ⊂ G be the trivial group subgroup. Note that H i(H,A) = 0 for i ≥ 1, just by
thinking in terms of cocycles. By Shapiro's lemma,

H i(G,CoIndG(A)) ∼= H i(H,A) = 0 Hi(G, IndG(A)) ∼= Hi(H,A) = 0
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3.8.4 Dimension shifting isomorphisms

Finally we get to dimension shifting, which was the whole purpose for de�ning and studying
induced and coinduced modules.

De�nition 3.8.12. Let G be a group and A a G-module. There is an injection

ι : A→ CoIndG(A) = HomZ(Z[G], A)
(
ι(a)

)
(g) = a

for a ∈ A, g ∈ G, extended by Z-linearity. Alternately, using the canonical isomorphism

θ : HomZ(Z, A) ∼= A φ↔ φ(1)

we can describe ι as ι = jθ−1 where

j : HomZ(Z, A) ↪→ HomZ(Z[G], A) φ 7→ φε

Here, ε is the augmentation map. We de�ne A∗ to be the cokernel of this map, making the
following exact sequence.

0→ A→ CoIndG(A)→ A∗ → 0

Note that this is split exact, see Remark 3.8.15.

De�nition 3.8.13. Similarly to the above, there is a surjection

π : IndG(A) = Z[G]⊗Z A→ A π(g ⊗ a) = a

Alternately, using the canonical isomorphism

η : Z⊗Z A ∼= A 1⊗ a↔ a

we have π = η−1 ◦ (ε⊗ IdA) where

ε⊗ IdA : Z[G]⊗Z A→ Z⊗Z A

Here, ε is the augmentation map. We de�ne A∗ to be the kernel of π, making the following
exact sequence.

0→ A∗ → IndG(A)→ A→ 0

Note that this is split exact, see Remark split exact.

Proposition 3.8.14. Let IG ⊂ G be the augmentation ideal. Using the notation above,

A∗ ∼= HomZ(IG, A) A∗ ∼= IG ⊗Z A

Proof. Using the map j from the previous de�nitions and the augmentation map ε, we know
that A∗ is isomorphic to the cokernel of j, which is described by the following short exact
sequence.

0 HomZ(Z, A) HomZ(Z[G], A) HomZ(IG, A) 0
j

φ 7→φε ψ 7→ψ|IG
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After checking exactness here, immediately we get A∗ ∼= HomZ(IG, A). Similarly, A∗ is
isomorphic to the kernel of ε⊗ IdA, which is depicted below.

0 IG ⊗Z A Z[G]⊗Z A Z⊗Z A 0
ε⊗IdA

Hence A∗ ∼= IG ⊗Z A.

Remark 3.8.15. The sequence 0 → IG → Z[G] → Z → 0 is exact, and additive functors
preserve split exactness, so the sequences de�ning A∗, A

∗ are also split exact, because they
are the image of this sequence under the respective functors Hom(−, A) and −⊗ A.

This is it, the big moment where we actually do dimension shifting.

Proposition 3.8.16 (Dimension shifting property). Let A be a G-module, and let A∗, A∗ be
as de�ned above. Then for all i ≥ 1,

H i+1(G,A) ∼= H i(G,A∗) Hi+1(G,A) ∼= Hi(G,A∗)

with isomorphisms provided by connecting homomorphisms of long exact sequences.

Proof. Consider the short exact sequence

0→ A→ CoIndG(A)→ A∗ → 0

and the associated long exact sequence on cohomology,

0→ AG → CoIndG(A)G → (A∗)G → H1(G,A)→ H1(G,CoIndG(A))→ · · ·

By Shapiro's lemma 3.8.10, for i ≥ 1 the terms H i(G,CoIndG(A)) vanish.

0→ H i(G,A∗)→ H i+1(G,A)→ 0

By exactness, the connecting homomorphism must be an isomorphism for i ≥ 1. The result
for homology follows in the same manner by considering the LES on homology associated to

0→ A∗ → IndG(A)→ A→ 0

In the next few sections, we will put these isomorphisms to work repeatedly.

3.9 Functorial properties of group cohomology

The title for this section is a bit grandiose. Really, it just means an assortment of things
which induce maps and make diagrams commute in nice ways.
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3.9.1 Compatible pairs

One very broad tool for inducing maps on cohomology is via compatible pairs.

De�nition 3.9.1. Let G,G′ be groups. Let A be a G-module, and A′ be a G′-module.
A compatible pair (for cohomology) is a pair (ρ, λ) of homomorphisms ρ : G′ → G and
λ : A→ A′ making the following diagram commute for every g′ ∈ G′.

A A

A′ A′

ρ(g′)

λ λ

g′

As an equation, we write this as λ(ρ(g′)a) = g′λ(a). We denote a compatible pair with the
notation (ρ, λ) : (G,A) → (G′, A′). (This notation sort of implies that ρ maps from G to
G′, but it doesn't, so be careful.) This generalizes the notion of a morphism of G-modules,
which is the case G′ = G, ρ = IdG.

For the categorically inclined, there is a category whose objects are pairs (G,A) of a
group G acting on an abelian group A, and whose morphisms are compatible pairs. I've
never seen anyone really take this point of view, though, so it may not be that useful.

One advantage of thinking this way is that we can think of group cohomology (or homol-
ogy) as taking an object in the category of pairs and outputting an abelian group H i(G,A)
(or Hi(G,A)). We would like this to be a functor, so a morphism in our category (a com-
patible pair) should induce a morphism in the target category. This does in fact happen, as
we now de�ne.

De�nition 3.9.2. Let (ρ, λ) : (G,A) → (G′, A′) be a compatible pair. The induced map
on cochains is

Ci(G,A)→ Ci(G′, A′) f 7→ λ ◦ f ◦ (ρ× · · · × ρ)

Since this is a chain map (see Shari� 1.8.2), it induces a map H i(G,A)→ H i(G′, A′), which
is called the induced map on cohomology. Alternately, the induced map on the
standard complex is

HomZ[G](Z[Gi+1], A)→ HomZ[G′](Z[(G′)i+1], A′) ψ 7→ λ ◦ ψ ◦ (ρ× · · · × ρ)

which is also a chain map, and induces a map on cohomology H i(G,A) → H i(G′, A′). The
induced maps on cohomology are the same from these two processes. As a third alternative,
one could even de�ne an induced map on general projective resolutions of Z, but this seems
unnecessary.

Returning to thinking categorically, we can say that H i(−,−) is a functor from the category
of pairs (G,A) to the category of abelian groups. As I said before, no one except me seems
to think about it this way, so perhaps it's not so useful.
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De�nition 3.9.3. For homology (in contrast with cohomology), the analogous notion of a
compatible pair is a pair of homomorphisms ρ : G→ G′ and λ : A→ A′, with A a G-module,
and A′ a G′-module, making the analogous square commute.

A A

A′ A′

g

λ λ

ρ(g)

These induce morphisms

ρ⊗ λ : Z[Gi+1]⊗Z[G] A→ Z[(G′)i+1]⊗Z[G′] A
′

where ρ is the induced map Z[Gi+1] → Z[(G′)i+1] de�ned by ρ on G and extending by Z-
linearity. This gives the induced chain map on the sequence de�ning Hi(G,A), so it induces
maps on homology Hi(G,A)→ Hi(G

′, A′).

3.9.2 Important compatible pairs: restriction, in�ation, corestric-
tion

We aren't going to study compatible pairs in any sort of generality. Instead, we're just going
to look at a few very useful compatible pairs and the maps they induce. Historically, people
probably described these maps on cohomology in other terms before using the language of
compatible pairs, but I'm not sure.

The main induced maps we will have are restriction, corestriction, and in�ation. There
is also a coin�ation map which we won't describe, because it doesn't get as much done later.
Restriction is named after function restriction, which it bears some resemblence too. It will
be a map

Res : H i(G,A)→ H i(H,A)

where H ⊂ G is any subgroup. Res is inspired by the idea of restricting a cocycle, which is a
function f : G→ A to f |H : H → A. Of course, since elements of H i(G,A) are equivalence
classes of cocycles, more subtlety is involved. Corestriction will be a map going the other
way,

Cor : Hi(H,A)→ Hi(G,A)

which is not so directly inspired, so things are more complicated. In�ation maps are losely
related to quotient maps, so we will need H ⊂ G to be a normal subgroup, and will obtain
a map

Inf : H i(G/H,AH)→ H i(G,A)

Coin�ation goes the oppposite direction from in�ation, but we don't describe it in detail in
these notes.

De�nition 3.9.4. Let H ⊂ G be a subgroup, and let A be a G-module. Let e : H ↪→ G
be the inclusion, so we have a compatible pair (e, IdA) : (G,A)→ (H,A). The induced map
Res : H i(G,A)→ H i(H,A) is called the restriction map.
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Remark 3.9.5. We may describe restriction maps more simply than this, and connect this
with the description of induced maps in De�nition 3.2.5. We may represent an element
of H i(G,A) by an i-cocycle f : Gi → A (recall that f being a cocycle just means f ∈
Zi(G,A) = ker diA). On cocycles, we have the map

Res : Zi(G,A)→ Zi(H,A) f 7→ f |H
which respects the equivalence classes of H i(G,A), so we may think of Res : H i(G,A) →
H i(H,A) as this �same� map, f 7→ f |H .

Res : H i(G,A)→ H i(H,A) [f ] 7→ [f |H ]

In degree zero, where H0(G,A) ∼= AG, H0(H,A) = AH , the restriction map is just the
inclusion AG ↪→ AH .

De�nition 3.9.6. Let H ⊂ G be a subgroup. We have a homology compatible pair of the
inclusion e : H ↪→ G with the IdA : A→ A, which induces a map on homology

Cor : Hi(H,A)→ Hi(G,A)

This is called the corestriction map. In degree zero, corestriction is just the quotient map

AH = A/IHA→
A/IHA

IGA/IHA
∼= A/IGA = AG

De�nition 3.9.7. Let H ⊂ G be a normal subgroup, and let q : G→ G/H be the quotient
map. Let A be a G-module, and let ι : AH ↪→ A be the inclusion. Then (q, ι) : (G/H,AH)→
(G,A) forms a compatible pair. The induced map on cohomology is called the in�ation
map, and denoted Inf : H i(G/H,AH)→ H i(G,A).

Remark 3.9.8. As in Remark 3.9.5, we can describe in�ation more concretely on i-cocycles.
On cocycles, in�ation is given by

Inf : Zi(G/H,AH)→ Zi(G,A) f 7→
(
g 7→ f(g)

)
Note that here g ∈ Gi, so by g, we mean the class of g in (G/H)i. In degree zero, where
H0(G,A) ∼= AG, H0(G/H,AH) ∼= (AH)G/H ∼= AG, in�ation is just the identity map.

Remark 3.9.9. The restriction maps Res : H i(G,A) → H i(H,A) provide a morphism of
δ-functors H i(G,−)→ H i(H,−) (but we omit the proof). All this means is that if we have a
short exact sequence 0→ A→ B → C → 0 of G-modules, the following diagram commutes.

· · · H i(G,A) H i(G,B) H i(G,C) H i+1(G,A) · · ·

· · · H i(H,A) H i(H,B) H i(H,C) H i+1(H,A) · · ·

Res Res

δ

Res Res

δ

The main content of this diagram is the squares involving connecting homomorphisms δ,
since the other squares commute just because Res is a natural transformation. So one can
think of a morphism of δ-functors as a family of natural transformations which are also
compatible with connecting homomorphisms.

Cor and Inf are also morphisms of δ-functors, but again we provide no proof of this fact.
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3.9.3 Extending Res and Cor

From the previous section, for a subgroup H ⊂ G, we have maps

Res : H i(G,A)→ H i(H,A) Cor : Hi(G,A)→ Hi(H,A)

So Res is de�ned on cohomology, and Cor is de�ned on homology. We want both Res and
Cor to be de�ned for cohomology and homology, so in this section we work toward that goal,
in the case where H has �nite index (see Proposition 3.9.15). We will also obtain restriction
and corestriction maps on Tate cohomology. The case of Tate cohomology is simplest, so we
start there.

De�nition 3.9.10. Let G be a �nite group and H ⊂ G a subgroup. Let A be a G-module.
By dimension shifting, we have isomorphism

Ĥ i−1(G,A) ∼= Ĥ i(G,A∗) Ĥ i−1(H,A) ∼= Ĥ i(H,A∗)

For i ≥ 1, we already have restriction maps

Res : Ĥ i(G,A∗)→ Ĥ i(H,A∗)

for i ≤ 0, so we may de�ne Res : Ĥ i−1(G,A) → Ĥ i−1(H,A) to be the unique map making
the following square commute.

Ĥ i−1(G,A) Ĥ i(G,A∗)

Ĥ i−1(H,A) Ĥ i(H,A∗)

∼=

Res Res

∼=

This inductively de�nes restriction maps on all Tate cohomology groups. Note that by the
previous remark, these squares commute for i ≥ 1 as well.

De�nition 3.9.11. Following the same procedure as above, we already have corestriction
maps on Tate cohomology for i ≤ −2, so using the same isomorphisms as above, inductively
de�ne Cor for i > −2 to be the unique map making the following square commute.

Ĥ i−1(H,A) Ĥ i(H,A∗)

Ĥ i−1(G,A) Ĥ i(G,A∗)

∼=

Cor Cor

∼=

Remark 3.9.12. The previous de�nitions serve to give restriction maps on homology and
corestriction maps on cohomology in the case that G is �nite, since that is when Tate
cohomology makes sense. We would like to have them even when G is not �nite, though, so
we need a bit more work. Even still, it will only work if [G : H] is �nite.

The general strategy is to de�ne Res on H0, then use dimension shifting to inductively
de�ne it on all other homology groups. Similarly, we'll de�ne Cor on H0 and dimension shift.
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De�nition 3.9.13. Let G be a group and H ⊂ G a subgroup of �nite index and A a
G-module. Regardless of whether H is normal, view G/H as a coset space, and de�ne

Res : H0(G,A)→ H0(H,A) x 7→
∑

gH∈G/H

gx̃

where for x ∈ AG = H0(G,A) = A/IGA, the element x̃ is any lift of x ∈ AH under the
quotient map AH → AG. Similarly, de�ne

Cor : H0(H,A)→ H0(G,A) y 7→
∑

gH∈G/H

gy

where y ∈ AH .

Lemma 3.9.14. The maps Res and Cor de�ned above are well de�ned.

Proof. We can handle the issue of coset representatives for both maps at once. We need to
check that for x̃ ∈ AH or y ∈ AH , the sums∑

gH∈G/H

gx̃
∑

gH∈G/H

gy

are independent of the choice of coset representatives. Let g1, . . . , gn and σ1, . . . , σn be two
sets of coset representatives for H, where n = [G : H], and σ−1

i gi ∈ H (that is, gi and σi
represent the same coset). Then

n∑
i=1

gix̃ =
n∑
i=1

(σiσ
−1
i )gix̃ =

n∑
i=1

σi(σ
−1
i gix̃) =

n∑
i=1

σix̃

The last equality follows from the fact that x̃ ∈ AH , so the action of H on x̃ is trivial, and
σ−1
i gi ∈ H. The same symbol-pushing works for an element of AH as well. Thus Cor is well

de�ned, and Res is well de�ned at least with respect to the issue of coset representatives.
Now we show that Res does not depend on the choice of lift of x. Let x̃, ỹ ∈ AH both be

lifts of x ∈ AG. Then by de�nition of the quotient map below,

AH = A/IHA→
A/IHA

IGA/IHA
∼= A/IGA = AG

we must have x̃− ỹ ∈ IGA/IHA. Then we can write x̃− ỹ as a �nite sum

x̃− ỹ =
∑

σ, a(σ − 1)a

where σ ∈ G \H, a ∈ A. Then∑
gH∈G/H

gx̃−
∑

gH∈G/H

gỹ =
∑

gH∈G/H

g(x̃− ỹ)

=
∑

gH∈G/H

∑
σ,a

g(σ − 1)a

=
∑

gH∈G/H

∑
σ,a

gσa−
∑

gH∈G/H

∑
σ,a

ga
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For any σ ∈ G, as g ranges over cosets of H, the elements σg also range over cosets of H, so
the two sums above are the same sum. Hence the di�erence is zero, so∑

gH∈G/H

gx̃ =
∑

gH∈G/H

gỹ

proving that Res is well de�ned.

Proposition 3.9.15. Let G be a group and H a subgroup of �nite index. There are maps

Res : Hi(G,A)→ Hi(H,A) Cor : H i(H,A)→ H i(G,A)

for all i ≥ 0 that coincide with the maps of De�nition 3.9.13 for i = 0 and that provide
morphisms of δ-functors

H i(G,−) =⇒ H i(H,−) H i(H,−) =⇒ H i(G,−)

Proof. Consider the long exact sequences on homology induced by the short exact sequence

0→ A∗ → IndG(A)→ A→ 0

They give the following commutative diagram.

H1(G, IndG(A)) = 0 H1(G,A) H0(G,A∗) H0(G, IndG(A))

H1(H, IndG(A)) = 0 H1(H,A) H0(H,A∗) H0(H, IndG(A))

Res Res

Then de�ne Res : H1(G,A) → H1(H,A) to be the induced map on kernels, making the
following diagram commute.

0 H1(G,A) H0(G,A∗) H0(G, IndG(A))

0 H1(H,A) H0(H,A∗) H0(H, IndG(A))

Res Res Res

Having de�ned Res onH1, we now proceed as in the case of Tate cohomology to use dimension
shifting to de�ne Res on Hi for i ≥ 2. From dimension shifting, we have isomorphisms

Hi+1(G,A) ∼= Hi(G,A∗) Hi+1(H,A) ∼= Hi(H,A∗)

so we inductively de�ne Res on Hi+1 to be the unique map making the following square
commute.

Hi+1(G,A) Hi(G,A∗)

Hi+1(H,A) Hi(H,A∗)

Res

∼=
δ

Res

∼=
δ
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So by construction Res maps commute with the connecting homomorphisms from the LES.
In total analogy with everything we just did, de�ne Cor on H1 by considering the long exact
sequences associated to

0→ A→ CoIndG(A)→ A∗ → 0

then de�ne Cor inductively on H i+1 to be the unique map making the following square
commute.

H i+1(G,A) H i(G,A∗)

H i+1(H,A) H i(H,A∗)

Cor

∼=
δ

Cor

∼=
δ

We have now de�ned Res and Cor for all H i, Hi with i ≥ 1.

Remark 3.9.16. We don't go into all the detail of δ-functors here, but roughly speaking, a
δ-functor is a family of functors indexed by Z≥0 which turns short exact sequences into long
exact sequences. So the prime example of a δ-functor is any family of derived functors, such
as group cohomology H i(G,−) or group homology Hi(G,−).

Roughly speaking, a morphism of δ-functors is a family of natural transformations which
induce a chain map between the induced long exact sequences. So saying that Res and Cor
are a morphism of δ-functors is asserting commutativity of some large diagram involving the
long exact sequences of homology/cohomology.

3.9.4 Composition Cor ◦Res and applications

Let H be a subgroup of �nite index in a group G. What can we say about the follwoing
composition?

H i(G,A) H i(H,A) H i(G,A)Res Cor

It turns out that we can say exactly what this composition is, and as an endomorphism of
H i(G,A), this will tell us a lot about H i(G,A), in particular when it is torsion, and about
p-primary torsion subgroups for primes p.

Proposition 3.9.17. Let G be a group and H a subgroup of �nite index. Then the maps

Cor Res : H i(G,A)→ H i(G,A)

Cor Res : Hi(G,A)→ Hi(G,A)

Cor Res : Ĥ i(G,A)→ Ĥ i(G,A)

are multiplication by [G : H]. (Note that the last map is only de�ned in the case where G is
�nite.)

Proof. We just prove this for regular cohomology, the proofs for homology and Tate coho-
moloy are similar. First we prove the case i = 0. In degree zero, Res is the inclusion and
Cor is given by the formula in De�nition 3.9.13.

Cor Res : AG → AG y 7→
∑

gH∈G/H

gy
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Since y ∈ AG, the sum on the right is just [G : H] copies of y, so the map is as claimed. Now
we inductively prove it for higher degrees by dimension shifting. The induction is basically
contained in the following commutative diagram.

H i+1(G,A) H i(G,A∗)

H i+1(H,A) H i(H,A∗)

H i+1(G,A) H i(G,A∗)

∼=

Res Res

[G:H]
∼=

Cor Cor

∼=

The bottom square commutes by de�nition of Cor on cohomology. The top square commutes
because Res as de�ned by compatible pairs is a morphism of δ-functors.

We get a very useful consequence of this is when G is �nite.

Corollary 3.9.18. Let G be a �nite group. Then for any G-module A and any i ∈ Z≥1,
H i(G,A) is a torsion group of exponent |G|.

Proof. Take H to be the trivial subgroup in Proposition 3.9.17, and note that H i(H,A) = 0
for any A and i > 0. Thus multiplication by |G| is the same as the zero map on H i(G,A).

H i(G,A) H i(H,A) = 0 H i(G,A)Res

|G|

Cor

Note that it is not at all clear how one might prove that H i(G,A) has exponent |G| just
by thinking about cocycles, so we really did get something out of all our compatible pairs
technology that we couldn't have gotten without it. The next corollary is another great
example of this.

Corollary 3.9.19. Let G be a �nite group. For each prime p, �x a Sylow p-subgroup Gp ⊂ G.
Then

1. The kernel of
Res : Ĥ i(G,A)→ Ĥ i(Gp, A)

has no elements of order pn for any n ≥ 1. Another way to say this is that Res is
injective on the p-primary component of Ĥ i(G,A). (Milne 1.33 [9])

2. If for some i ∈ Z, all the maps

Res : Ĥ i(G,A)→ Ĥ i(Gp, A)

are trivial for each prime p, then Ĥ i(G,A) = 0.
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Proof. (1) Suppose α ∈ Ĥ i(G,A) has order pn, so pnα = 0 for some n ≥ 1. By Proposition
3.9.17,

Cor Res(α) = [G : Gp]α

Since Gp is a Sylow p-subgroup, [G : Gp] is coprime to p, and since α has order pn, [G :
Gp]α 6= 0. Thus α is not in the kernel of Cor Res, so α is not in the kernel of Res.

(2) By (1), if Res : Ĥ i(G,A) → Ĥ i(Gp, A) is the zero map, then Ĥ i(G,A) has no

elements of p-power order. Thus if the restriction maps are zero for all p, then Ĥ i(G,A) has

no elements of p-power order for any prime p, which is only possible if Ĥ i(G,A) = 0.

3.9.5 In�ation restriction sequence

We addressed the composition of Cor and Res, at least in the case where the subgroup
involved has �nite index. There is also a natural composition of Inf and Res, which turns
out to be very useful as well. The best way to describe this is actually using the language of
spectral sequences, but we don't have space for all of that here.

Proposition 3.9.20 (In�ation restriction sequence). Let N ⊂ G be a normal subgroup, and
let A be a G-module. The follow sequence is exact.

0 H1(G/N,AN) H1(G,A) H1(N,A) H2(G/N,AN) H2(G,A)Inf Res τ Inf

The map τ is something I don't understand, but it seems to be quite complicated to describe.
An incomplete proof of the above is given in Theorem 4.1.20 of Rosenberg [13]. A

confusing proof is given in Proposition 3.3.16 of Gille & Szamuely [4]. A proof utilizing
spectral sequences is given in Proposition 6.8.2 and Remark 6.8.3 of Weibel [16].

In lieu of a full proof of exactness for the in�ation-restriction sequence, we can at least
give a proof here of exactness for the �rst three terms, just involving Inf and Res. See below
for a proof of exactness for just the �rst three terms, following Theorem 1.8.10 of Shari�
[15]. First, we recall the descriptions of Inf and Res in terms of cocycles.

Remark 3.9.21. Let G be a group with a normal subgroup N and let A be a G-module.
For a cocycle φ : G/N → AN and for g ∈ G, we have a cocycle in Z1(G,A) described by

Ĩnf(φ) : G→ A Ĩnf(φ)(g) = φ(g)

where g = gN is the image of g in G/N . That is to say, there is a map

Ĩnf : Z1(G,A)→ Z1(G/N,AN) φ 7→ (g 7→ φ(g))

In these terms, Inf[φ] = [Ĩnf(φ)]. The previous equality is represented by the following
commutative square, where the vertical arrows are quotient maps.

Z1(G/N,AN) Z1(G,A)

H1(G/N,AN) H1(G,A)

Ĩnf

Inf
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Remark 3.9.22. Now we recall the description of Res in terms of cocycles. Let G be a
group with a subgroup N and let A be a G-module. The literal function restriction map

Z1(G,A)→ Z1(N,A) ψ 7→ ψ|H

induces Res, which is to say Res[ψ] = [ψ|N ]. We represent this with the following commuta-
tive square, where vertical arrows are quotient maps.

Z1(G,A) Z1(N,A)

H1(G,A) H1(N,A)

ψ 7→ψ|N

Res

Proposition 3.9.23 (Partial in�ation restriction sequence). Let G be a group and N ⊂ G
a normal subgroup, and let A be a G-module. Then the following sequence is exact.

0 H1(G/N,AN) H1(G,A) H1(N,A)Inf Res

Proof. First, we show Inf is injective (which gives exactness at the �rst term). Let [φ] ∈
H1(G/N,AN) with representative cocycle φ such that [φ] ∈ ker Inf, so Inf[φ] = [Ĩnf(φ)] =

0 ∈ H1(G,A). That is, Ĩnf(φ) is a coboundary, which in degree one means that there exists
a ∈ A so that for all g ∈ G,

Ĩnf(φ)(g) = φ(g) = (g − 1)a

In particular, for n ∈ N ,
0 = φ(n) = (n− 1)a

so a ∈ AN . Then reusing the previous equality, we have a ∈ AN such that

φ(g) = (g − 1)a = (g − 1)a

which is exactly the condition for φ to be a coboundary. Thus [φ] = 0, and Inf is injective.
Now we need exactness at H1(G,A). We can easily get im Inf ⊂ ker Res by showing that

Res ◦ Inf = 0. Let [φ] ∈ H1(G/N,AN) with representative cocycle φ. Then

Res ◦ Inf[φ] = Res[Ĩnf(φ)] = [Ĩnf(φ)|N ]

But just as a cocycle, Ĩnf(φ)|N is zero, because for n ∈ N ,

Ĩnf(φ)|N(n) = φ(n) = φ(1) = 0

2 Thus Res ◦ Inf = 0. Now we need to show ker Res ⊂ im Inf. Let [α] ∈ ker Res ⊂ H1(G,A),
with representative cocycle α ∈ Z1(G,A). Since Res[α] = [α|N ] = 0, α|N is a coboundary,
so there exists a ∈ A such that for all n ∈ N , α(n) = (n− 1)a. De�ne

β : G→ A β(g) = α(g)− (g − 1)a

2Note that a cocycle vanishes on the identity. This follows from the cocycle relation: φ(x) = φ(1x) =
1φ(x) + φ(1) =⇒ φ(1) = 0.

82



This is de�ned so that for n ∈ N ,

β(n) = α(n)− (n− 1)a = 0

Note that β ∈ Z1(G,A), since it di�ers from the cocylce α by a coboundary (g− 1)a, which
also means [β] = [α] ∈ H1(G,A). Also, for g ∈ G, n ∈ N ,

β(gn) = gβ(n) + β(g) = β(g)

so β factors through G/N , meaning that there is a map β making the following diagram
commute, which is to say, β(g) = β(g).

G N

G/N

β

β

Also, for g ∈ G, n ∈ N ,

nβ(g) = nβ(g) + β(n) = β(ng)

= β(gg−1ng) = gβ(g−1ng) + β(g) = β(g)

the last equality uses normality of N to say that g−1ng ∈ N . Thus the image of β lands in
AN , so β ∈ H1(G/N,AN). Finally, it is immediate that Ĩnf(β) = β, so

Inf[ β ] = [Ĩnf(β)] = [β] = [α]

proving ker Res ⊂ im Inf.

There is also a generalization of the in�ation restriction sequence for higher cohomology
groups, but with additional hypotheses involving vanishing of smaller cohomology groups.
We don't prove this one even for the �rst few terms.

Proposition 3.9.24 (Generalized in�ation restriction sequence). Let N ⊂ G be a normal
subgroup, and let A be a G-module. Let i ≥ 1, and suppose that Hj(N,A) = 0 for 1 ≤ j ≤
i− 1. The follow sequence is exact.

0 H i(G/N,AN) H i(G,A) H i(N,A) H i+1(G/N,AN) H i+1(G,A)Inf Res τi,A Inf

Proof. See Shari� 1.8.11 [15] or Gille and Szamuely 3.3.19 [4]. Shari� only includes the �rst
three nonzero terms, the others come from CSAGC. The map τi,A does not seem to have a
simple description. This is really coming from the Hochschild-Serre spectral sequence.

The following exercise from Rosenberg [13] gives an application of the in�ation-restriction
sequence.
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Proposition 3.9.25 (Exercise 4.1.30 of Rosenberg [13]). Let G be an abelian group and
choose a free resolution of G

0→ F1
i−→ F0

π−→ G→ 0

with F1, F0 free abelian. View Z as a trivial module for F0 and G. Then the induced map
π∗ : H2(F0,Z)→ H2(G,Z) is surjective.

Proof. (Note that all hom groups in this proof are over Z.) Let A be an abelian group,
viewed as trivial module over G,F0, F1. The in�ation-restriction sequence 3.9.20 is

0 Hom(G,A) Hom(F0, A) Hom(F1, A) H2(G,A) H2(F0, A)Inf Res τ Inf

We also have a long exact sequence associated to 0→ F1 → F0 → G→ 0 from the functors
ExtZ(−, A). Note that Ext1

Z(F0, A) = 0 because F0 is a projective Z-module.

0 Hom(G,A) Hom(F0, A) Hom(F1, A) Ext1
Z(G,A) 0

π∗ i∗ δ

Note that the following diagram commutes. This follows from thinking about what Inf and
Res do in terms of cocycles. Our next step is to de�ne α making this commute.

0 Hom(G,A) Hom(F0, A) Hom(F1, A) Ext1
Z(G,A) 0

0 Hom(G,A) Hom(F0, A) Hom(F1, A) H2(G,A) H2(F0, A)

π∗

Id

i∗

Id

δ

Id α

Inf Res τ Inf

We de�ne α : Ext1
Z(G,A) → H2(G,A) as follows. Take x ∈ Ext1

Z(G,A), and take a lift
x̃ ∈ Hom(F1, A), so that δ(x̃) = x. Then de�ne α(x) = τ(x̃). To see that this is well de�ned,
suppose x̃, ỹ are both lifts. Then

δ(x̃− ỹ) = 0 =⇒ x̃− ỹ ∈ ker δ = im Res = ker τ =⇒ τ(x̃− ỹ) = 0 =⇒ τ(x̃) = τ(ỹ)

Hence α is well de�ned. By construction, the square involving α commutes. Now we claim
that α is injective. Let x ∈ kerα. Then there exists x̃ ∈ Hom(F1, A) such that δ(x̃) = x and
τ(x̃) = 0, so x̃ ∈ ker τ = im Res = ker δ. That is, δ(x̃) = x = 0, so α is injective.

Now observe that ker Inf = im τ = im(αδ) = imα since δ is surjective. Thus α gives an
isomorphism between Ext1

Z(G,A) and ker Inf.
Leaving α and the previous diagram aside for the moment, note that H1(G,Z) ∼= G and

H1(F0,Z) ∼= F0 by Proposition 3.6.7. From the universal coe�cient theorem 3.6.10, we get
H2(F0, A) ∼= Hom(H2(F0,Z), A) because the Ext term vanishes. Again using the universal
coe�cient theorem 3.6.10, we have a split short exact sequence in the top row of the following
commutative diagram. Our next step is to de�ne β making this diagram commute.

0 Ext1
Z(G,A) H2(G,A) HomZ(H2(G,Z), A) 0

0 ker Inf H2(G,A) H2(F0, A)

α∼=

γ

Id β

Inf
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We de�ne β : Hom(H2(G,Z), A)→ H2(F0, A) as follows. For x ∈ Hom(H2(G,Z), A), take a
lift x̃ so that γ(x̃) = x, then set β(x) = Inf(x̃). This is well de�ned by the same argument
as for α: if x̃, ỹ are both lifts, then

x̃− ỹ ∈ ker γ = ker Inf =⇒ Inf(x̃) = Inf(ỹ)

It is injective by the same argument as for α as well: if x ∈ ker β, then there exists a lift
x̃ such that Inf(x̃) = 0, but then 0 = Inf(x̃) = x. Using the isomorphism H2(F0, A) ∼=
Hom(H2(F0,Z), A), β gives an injection

Hom(H2(G,Z), A) ↪→ Hom(H2(F0,Z), A)

Now since A was arbitrary, this is true for all abelian groups A. Then by a standard result
about left exactness of the hom functor (see Lang [6] Proposition 2.1 of Chapter III), the
map inducing these, namely H2(F0,Z) → H0(G,Z), is surjective, which is what we wanted
to prove originally.

3.10 Cohomological triviality

The main result of this section is Theorem 3.10.10, which gives equivalent conditions for
when a module has vanishing cohomology for all subgroups of the given group. Most of the
intermediate results to get there are forgettable, or at least, not that easy to remember since
they all blend together.

In this section, all references to Cassels & Frohlich [1] are from chapter IV, section 9,
which is the main source for this whole section. We also roughly follow Section 1.11 of Shari�
[15].

De�nition 3.10.1. Let G be a �nite group. A G-module A is cohomologically trivial if
Ĥ i(H,A) = 0 for all subgroups H ⊂ G and all i ∈ Z. (In particular, Ĥ i(G,A) = 0 for all
i ∈ Z.)

Warning: It is NOT the case that if Ĥ i(G,A) = 0 for all i ∈ Z, then Ĥ i(H,A) = 0 for

all i ∈ Z and all subgroups. The cohomology groups Ĥ i(G,A) could all vanish, but for
subgroups H ⊂ G, cohomology groups need not vanish.

Intuitively making G �smaller� should make H i(G,A) `'smaller�, but this intuition needs
to be abandoned because it's just not true. There is a containment on the level of cochains

Ci(H,A) ⊂ Ci(G,A)

and even a containment of cocycles

Zi(H,A) ⊂ Zi(G,A)

but the coboundaries Bi(H,A) and Bi(G,A) are not so simply related, and the quotients
H i(G,A) = Zi(G,A)/Bi(G,A) and H i(H,A) = Zi(H,A)/Bi(H,A) are not related by any
obvious containments.
Note: The following lemma is a repeat of Corollary 3.9.19, but we include it since this
version of the proof has some nice diagrams.
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Lemma 3.10.2 (Shari� [15] 1.8.24). Let p be a prime, let G be a �nite group, and let Gp be
a Sylow p-subgroup. The restriction map Res : Hr(G,M) → Hr(Gp,M) is injective on the
p-primary component of Hr(G,M).

Proof. We know that Cor ◦Res = [G : Gp].

Hr(G,M) Hr(Gp,M) Hr(G,M)Res

[G:Gp]

Cor

Since gcd([G : Gp], p) = 1, restricting to the primary component, Res ◦Cor is an isomor-
phism.

Hr(G,M)[p] Hr(Gp,M) Hr(G,M)[p]Res

[G:Gp]

∼=

Cor

Thus Res is injective and Cor is surjective in this situation.

Remark 3.10.3. We will frequently use the hypothesis that an abelian group (or G-module)
satis�es pA = 0 for a prime p. This is equivalent to saying that A is an Fp-vector space.

Lemma 3.10.4 (Cassels & Frohlich [1] Lemma 1; Shari� [15] 1.11.4). Let p be a prime
number, G a p-group, and A a G-module such that pA = 0. Then the following are equivalent.

1. A = 0

2. H0(G,A) = 0

3. H0(G,A) = 0

Proof. It is clear that (1) =⇒ (2), (3).
(2) =⇒ (1) Suppose A 6= 0, and let x ∈ A be a nonzero element. Let B be the

submodule generated by x. Then B is �nite, with order pn for some n > 0. The element
0 ∈ B is a �xed point of the G-action, and by Lemma 3.13.6, the number of �xed points is
congruent to |B| = pn mod p, so there are at least p ≥ 2 �xed points. Thus H0(G,A) = AG

is nonzero.
(3) =⇒ (1) Let A′ = HomZ(A,Fp) be the Fp-dual of A, and note pA′ = 0. Then

H0(G,A′) ∼= (A′)G ∼= HomZ(A,Fp)G ∼= HomZ[G](A,Fp) ∼= HomZ[G](H0(G,A),Fp)

Since H0(G,A) = 0, this implies H0(G,A′) = 0. Then by (2) =⇒ (1), A′ = 0. Since A′ is
the dual of A, this implies A = 0.

Lemma 3.10.5 (Cassels & Frohlich [1] Lemma 2; Shari� [15] 1.11.15). Let p be a prime
number, G a p-group, and A a G-module such that pA = 0. If H1(G,A) = 0, then A is free
as an Fp[G]-module.

86



Proof. Note that H0(G,A) = AG = A/IGA is an abelian group annihated by |G| = p, which
is to say, it is an Fp-module, so it has an Fp-basis {ei}i∈I . For each ei, let ai ∈ A be a lift.

Let B ⊂ A be the submodule generated by all the ai. Then the inclusion B ↪→ A induces
an isomorphism H0(G,B) → H0(G,A). Consider the long exact sequence on homology
associated to 0→ B → A→ B/A→ 0.

· · · → H0(G,B)
∼=−→ H0(G,A)→ H0(G,A/B)→ 0

Since the �rst map is an isomorphism, by exactness H0(G,A/B) = 0. Then by Lemma
3.10.4, A/B = 0, which is to say, the ai generate A as an Fp[G]-module.

Let F be the free Fp[G]-module generated by the ai, and let π : F → A, ai 7→ ai be the
quotient map, and let R = kerπ, so we have an exact sequence of Fp[G]-modules

0→ R→ F → A→ 0

By hypothesis H1(G,A) = 0, so the long exact sequence on homology gives an exact sequence

0→ H0(G,R)→ H0(G,F )→ H0(G,A)→ 0

By construction of the ai, the induced map H0(G,F )→ H0(G,A) is an isomorphism, so by
exactness H0(G,R) = 0. Since pR = 0, by Lemma 3.10.4 this implies R = 0, which is to say,
F ∼= A so A is free as an Fp[G]-module.

Theorem 3.10.6 (Cassels & Frohlich[1] Theorem 6; Shari� [15] 1.11.6). Let p be a prime
number, G a p-group, and A a G-module such that pA = 0. Then the following are equivalent.

1. A is a free Fp[G]-module.

2. A is a coinduced G-module.

3. A is cohomologically trivial.

4. Ĥn(G,A) = 0 for some n ∈ Z.

Proof. We prove (1) =⇒ (2) =⇒ (3) =⇒ (1) and (3) ⇐⇒ (4).
(1) =⇒ (2) We have an isomorphism

CoIndG(Fp) = HomZ(Z[G],Fp)→ Fp[G] φ 7→
∑
g∈G

φ(g)g

Then using ⊕-linearity of Hom, if A is a free Fp[G]-module,

A ∼=
⊕

Fp[G] ∼= HomZ

(
Z[G],

⊕
Fp
)

= CoIndG
(⊕

Fp
)

(2) =⇒ (3) Previous result, immediate from Shapiro's lemma.

(3) =⇒ (1) H1(G,A) ∼= Ĥ−2(G,A) = 0, so by Lemma 3.10.5, A is a free Fp[G]-module.
(3) =⇒ (4) Obvious.
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(4) =⇒ (3) Recall the modules A∗ ∼= IG ⊗Z A and A∗ ∼= HomZ(IG, A) used for dimension
shifting, along with the exact sequences

0→ A∗ → IndG(A)→ A→ 0 0→ A→ CoIndG(A)→ A∗ → 0

Since pA = 0, we get pA∗ = 0 and pA∗ = 0 as well. Thus by dimension shifting, there is a
G-module B (constructed by some interation of A∗ or A

∗) such that pB = 0 and

Ĥj−2(G,B) ∼= Ĥj+n(G,A) (3.10.1)

for all j ∈ Z. In particular, H1(G,B) = Ĥ−2(G,B) = Ĥn(G,A) = 0, using the hypothesis

(4). Then by Lemma 3.10.5, B is a free Fp[G]-module, so by (1) =⇒ (2), Ĥ i(B) = 0 for all

i ∈ Z, so by isomorphism 3.10.1, Ĥ i(A) = 0 for all i ∈ Z.

Theorem 3.10.7 (Cassels & Frohlich [1] Theorem 7; Shari� [15] 1.11.7). Let p be a prime
number, G a p-group, and A a G-module so that A is p-torsion free as an abelian group.
Then the following are equivalent.

1. A is cohomologically trivial.

2. Ĥn(G,A) = Ĥn+1(G,A) = 0 for some n ∈ Z.

3. A/pA is a free Fp[G]-module.

Proof. We prove (1) =⇒ (2) =⇒ (3) =⇒ (1).
(1) =⇒ (2) Obvious.
(2) =⇒ (3) Since A is p-torsion free, the sequence

0 A A A/pA 0
p

(3.10.2)

is exact. Using our hypothesis Ĥn(G,A) = Ĥn+1(G,A) = 0, part of the long exact sequence
on Tate cohomology looks like

0 = Ĥn(G,A)→ Ĥn(G,A/pA)→ Ĥn+1(G,A) = 0

so Ĥn(G,A/pA) = 0 by exactness. Then by (4) =⇒ (1) of Theorem 3.10.6, A/pA is a free
Fp[G]-module.

(3) =⇒ (1) By (1) =⇒ (3) of Theorem 3.10.6, Ĥn(G,A/pA) = 0 for all n, for any

subgroup H ⊂ G the long exact sequence on Tate cohomology Ĥ i(H,−) associated to the
exact sequence 3.10.2 looks like

· · · 0 Ĥn(H,A) Ĥn(H,A) 0 · · ·p

∼=

Since H is a p-group, Ĥn(H,A) is annihilated by some power of p, which is to say, iterating

the isomorphism above enough times makes it zero. But this is only possible of Ĥn(H,A) = 0
(for all n ∈ Z), thus A is cohomologically trivial.
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Corollary 3.10.8 (Cassels & Frohlich [1]; Shari� [15] 1.11.9). Let p be a prime number, G
a p-group, and A a G-module which is a free abelian group and cohomologically trivial. Then
if B is a p-torsion free G-module, the G-module HomZ(A,B) is cohomologically trivial.

Proof. As B is p-torsion free, we have a short exact sequence of abelian groups

0 B B B/pB 0
p

Since A is a free abelian group, it is projective, so the functor HomZ(A,−) is exact, thus we
have the following exact sequence of abelian groups, which also happens to be a sequence of
G-modules.

0 HomZ(A,B) HomZ(A,B) HomZ(A,B/pB) 0
p

In particular, HomZ(A,B) has no p-torsion. Since any Z-homomorphism A→ B/pB factors
through A/pA,

HomZ(A,B/pB) ∼= HomZ(A/pA,B/pB)

By (1) =⇒ (3) of Theorem 3.10.7, A/pA is a free Fp[G]-module. Let I be an indexing set
for a basis of A/pA as an Fp[G]-module. Then

HomZ(A,B/pB) ∼= HomZ(A/pA,B/pB)

∼= HomZ

(⊕
i∈I

Fp[G], B/pB

)
A is free

∼=
∏
i∈I

HomZ(Fp[G], B/pB) Hom commutes with products

∼=
∏
i∈I

HomZ(Z[G], B/pB) Every Z-hom on Fp lifts to a hom on Z

∼= HomZ

(
Z[G],

∏
i∈I

B/pB

)
Hom commutes with products

Thus HomZ(A,B/pB) is a coinduced G-module, and it is annihilated by p, so by (2) =⇒ (1)
of Theorem 3.10.6 it is a free Fp[G]-module. By the �rst isomorphism theorem applied to
the sequence 3.10,

HomZ(A,B/pB) ∼= HomZ(A,B)/pHomZ(A,B)

Thus by (3) =⇒ (1) of Theorem 3.10.7 (where the A of the theorem is our HomZ(A,B)),
HomZ(A,B) is cohomologically trivial.

Theorem 3.10.9 (Cassels & Frohlich [1] Theorem 8; Shari� [15] 1.11.8, 1.11.10). Let G a
�nite group, and A a G-module so that A is a free abelian group. For each prime p, choose
a Sylow p-subgroup Gp ⊂ G. Then the following are equivalent.

1. A is cohomologically trivial.
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2. A is cohomologically trivial as a Gp-module for each prime p.

3. A is a projective G-module.

4. A is a projective Gp-module for each prime p.

Proof. We prove (2) =⇒ (1) ⇐⇒ (3) =⇒ (4) =⇒ (2). Although proving (3) =⇒ (1)
is not necessary to complete the circle, we use it to prove (4) =⇒ (2). Also, (1) =⇒ (2)
is not strictly necessarly, but it is immediate from the de�nition.

(2) =⇒ (1) Let H ⊂ G be a subgroup and let Hp ⊂ H be a p-Sylow subgroup. The

restriction map Res : Ĥ i(H,A)→ Ĥ i(Hp, A) is injective on the p-primary component. Since

Hp ⊂ Gp, by cohomological triviality of Gp, Ĥ
i(Hp, A) = 0, so Ĥ i(H,A) = 0.

(1) =⇒ (3) Choose an exact sequence of G-modules 0→ Q→ F
π−→ A→ 0 where F is a

free G-module. Since A is Z-free, the functor HomZ(A,−) is exact, so the following sequence
is an exact sequence of abelian groups, which also happens to be a sequence of G-modules.

0→ HomZ(A,Q)→ HomZ(A,F )→ HomZ(A,A)→ 0

Note that F is Z-free, so Q is also Z-free, in particular, Q is p-torsion free for any prime
p. Since A is cohomologically trivial (by hypothesis), by Corollary 3.10.8, HomZ(Q,A) is
cohomologically trivial as a Gp-module for each p. Then by (2) =⇒ (1), HomZ(Q,A)
is cohomologically trivial. From the long exact sequence on (non-Tate) group cohomology
associated the previous sequence, we get an exact sequence

H0(G,HomZ(A,F )→ H0(G,HomZ(A,A))→ 0

We may identify these with

H0(G,HomZ(A,F )) = HomZ(A,F )G = HomZ[G](A,F )

H0(G,HomZ(A,A)) = HomZ(A,A)G = HomZ[G](A,A)

so the surjection on H0 says that

HomZ[G](A,F )→ HomZ[G](A,A) f 7→ π ◦ f

is surjective. In particular, the identity map A → A lifts to a map φ : A → F such that
π ◦ φ = Id.

F A

A

π

Id
φ

Thus the sequence 0→ Q→ F → A→ 0 splits, so A is a direct summand of F , hence A is
a projective Z[G]-module.

(3) =⇒ (4) Suppose A ⊕ Q = F is a free Z[G]-module. Then F is also a free Z[Gp]-
module, hence A is also projective as a Z[Gp]-module.

(3) =⇒ (1) Let P be a projective Z[G]-module, and choose Q so that P ⊕ Q is a free
Z[G]-module. Then since free Z[G]-modules are cohomologically trivial,

Ĥ i(G,P ) ↪→ Ĥ i(G,P )⊕ Ĥ i(G,Q) ∼= Ĥ i(G,P ⊕Q) = 0
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which proves that P is cohomologically trivial.
(4) =⇒ (2) Immediate from (3) =⇒ (1).

Finally we have the main result of the section, which gives a very local criterion for cohomo-
logical triviality of a module A. It turns out that you just need vanishing of two consecutive
cohomology groups for each p-Sylow subgroup, and that forces all of the cohomology groups
for A to be zero.

Theorem 3.10.10 (Cassels & Frohlich [1] Theorem 9; Shari� [15] 1.11.11). Let G be a �nite
group and A a G-module. For each prime p, �x a Sylow p-subgroup Gp ⊂ G. Then the
following are equivalent.

1. A is cohomologically trivial.

2. For each prime p, there exists n ∈ Z such that Ĥn(Gp, A) = Ĥn+1(Gp, A) = 0.

3. There is an exact sequence 0 → P1 → P0 → A → 0 where P0, P1 are projective
G-modules.

Proof. We prove (1) =⇒ (2) =⇒ (3) =⇒ (1).
(1) =⇒ (2) Immediate from the de�nition.
(2) =⇒ (3) Let 0→ R→ F → A→ 0 be a short exact sequence of G-modules where F is
Z[G]-free. Note that F is also Z-free, so R is also Z-free as a subgroup of a free Z-module.
Then F is cohomologically trivial, so by considering the LES of Tate cohomology,

Ĥj−1(Gp, A) ∼= Ĥj(Gp, R)

for every j ∈ Z. Then by the hypothesis, Ĥj(Gp, R) vanishes for two consecutive values of j.
Since R is Z-free, by Theorem 3.10.7, R is cohomologically trivial. Then by Theorem 3.10.9,
R is a projective G-module.
(3) =⇒ (1) Let H ⊂ G be any subgroup. Since P0, P1 are cohomologically trivial, the

LES of Tate cohomology Ĥ i(H,−) associated to 0 → P1 → P0 → A → 0 implies that A is
cohomologically trivial.

3.11 Cup products

The analogies with singular homology and algebraic topology continue - just as in that
context, our cohomology theory has a cup product. This is perhaps the place where the
geometric version has the biggest advantage, since they can often visualize cup products via
intersections of subspaces or submanifolds, whereas for group cohomology the cup product
has no such intuition.

Because of this, it is best to think of the cup product in group cohomology as simply the
unique function with a laundry list of very nice properties. We will eventually show that
just a few of the properties su�ce to uniquely determine the cup product.

Of course, we also have a construction in terms of cochains. Despite this being very
explicit, it is extremely rare for it to be useful for concrete computations. Unfortunately,
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there are just not a lot of situations where we can explicitly compute cup products for speci�c
examples.

Despite this, cup products are useful and important. Many important isomorphisms can
be realized via cup product maps, such as Tate's theorem (see Theorem 3.7.10 and Theorem
3.7.12) and 2-periodicity of Tate cohomology for �nite groups (see Proposition 3.7.8 and
Proposition 1.10.3 of Shari� [15]). Much later, we will also use cup products to realize
isomorphisms involving Brauer groups and formulating the Merkurjev-Suslin theorem (see
Proposition 5.8.16).

3.11.1 Construction of cup product

We start by constructing a somewhat explicit map in terms of projective resolutions and/or
in terms of cochains. These will lead to the same place, but we include both for full disclosure.

De�nition 3.11.1. Let G be a group, and consider the standard projective resolution P• →
Z→ 0 where Pi = Z[Gi+1] (3.1.11). De�ne

κij : Pi+j → Pi ⊗Z Pj κij(g0, . . . , gi+j) = (g0, . . . , gi)⊗ (gi, . . . , gi+j)

Let A,B be G-modules. De�ne the map

ψij : HomZ[G](Pi, A)⊗Z HomZ[G](Pj, B)→ HomZ[G](Pi ⊗Z Pj, A⊗Z B)

φ⊗ φ′ 7→
(
α⊗ β 7→ φ(α)⊗ φ′(β)

)
Finally, de�ne the �preliminary� cup product map by

HomZ[G](Pi, A)⊗Z HomZ[G](Pj, B) HomZ[G](Pi+j, A⊗Z B)∪

φ ∪ φ′ =
(
ψij(φ⊗ φ′)

)
◦ κij

More explicitly,
φ ∪ φ′(g0, . . . , gi+j) = φ(g0, . . . , gi)⊗ φ′(gi, . . . , gi+j)

Note that this isn't the �real� or ��nal� version of the cup product. This is just the version
we use to induce a map on cohomology.

De�nition 3.11.2. Here is an alternate de�nition of the preliminary cup product map,
using cochains. Let A,B be G-modules, and de�ne

Ci(G,A)⊗Z Cj(G,B) Ci+j(G,A⊗Z B)∪

for f ∈ Ci(G,A), f ′ ∈ Cj(G,B) by

(f ∪ f ′)(g1, g2, . . . , gi+j) = f(g1, . . . , gi)⊗ g1g2 · · · gif ′(gi+1, . . . , gi+j)

Note that by some uninspiring equations, one veri�es that these two de�nitions �agree� in the
sense that they correspond under the natural isomorphism of functors HomZ[G](Z[Gi+1,−) ∼=
Ci(G,−).
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Now, using our explicit version in terms of projectives/cochains, we get the real version
of the cup product on cohomology groups.

De�nition 3.11.3. Let A,B be G-modules, and let ∪ be the preliminary cup product
de�ned on cochains. The cup product is the induced map

H i(G,A)⊗Z Hj(G,B) H i+j(G,A⊗Z B)∪

de�ned in terms of the preliminary cup product map by

f ∪ f ′ := f ∪ f ′

On the RHS, the cup is the preliminary cup product map, and bars denote equivalence class
in the quotient H i(G,A) = Zi(G,A)/Bi(G,A). This is well de�ned because the preliminary
cup product of two cocycles is a cocycle, and the preliminary cup product of a cocycle with
a coboundary is a coboundary.

Often there is some obvious map θ : A ⊗Z B → C for some other G-module C, and we
consider the composition

H i(G,A)⊗Z Hj(G,B) H i+j(G,A⊗Z B) H i+j(G,C)∪ θ∗

which is α ⊗ β 7→ θ(α ∪ β). For some weird reason, often the θ∗ is omitted when it is
understood to be there, and one just writes ∪ for the composition, so people will write
things like

H i(G,A)⊗Z Hj(G,B) H i+j(G,C)∪

For example, if B = Z, then A⊗Z Z ∼= A so there is an obvious map θ : A⊗Z Z→ A which
is an isomorphism, and the induced θ∗ is also an isomorphism, so we could just write

H i(G,A)⊗Z Hj(G,Z) H i+j(G,Z)∪

Remark 3.11.4. Let G be a �nite group, and A,B be G-modules. Similarly to the above,
one may de�ne a cup product on Tate cohomology.

Ĥ i(G,A)⊗Z Ĥj(G,B) Ĥ i+j(G,A⊗Z B)∪

We omit the details for this. The best way to go about it would probably be to use dimension
shifting isomorphisms and the long exact sequence to induce cup products on negative degree
Tate cohomology groups.

3.11.2 Cohomology as a graded ring (sometimes)

Let G be a group and A a G-module. Then there are cup product maps

∪ : H i(G,A)×Hj(G,A)→ H i+j(G,A⊗Z A)
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Assume we have a morphism of G-modules

A⊗Z A→ A

For example, this happens if A is cyclic group 3. Then this induces a map on cohomology

H i(G,A⊗Z A)→ H i(G,A)

We are just going to be sloppy and denote the composition of these by ∪.

H i(G,A)×Hj(G,A)
∪−→ H i+j(G,A)

Thus we have a graded (anticommutative) ring structure on

∞⊕
i=0

H i(G,A)

In principle, the structure of this ring could di�erentiate between G-modules which have the
same cohomology groups. Even if H i(G,A) ∼= H i(G,B) for all i, the cup products could be
di�erent, so we would conclude A 6∼= B as G-modules.

Warning! This ring structure only exists when there is a map A⊗ A→ A. It is tempting
to think there is a natural choice of map here, but this is not true. For example, the obvious
choice a⊗b 7→ a+b is not well de�ned, because A×A→ A, (a, b) 7→ a+b is not a Z-balanced
map.

3.11.3 Properties of cup product

As we mentioned before, group cohomology cup products are notoriously di�cult to compute
even for rather basic concrete examples. Because of this, the best hope for an intuition
about cup products is just heavily absorbing the long list of properties characterizing the
cup product.

We skip a lot of the proofs for these, because they aren't that important to know and
understand for later, and don't really illustrate techniques that get reused later. Shari� [15]
is a good source for proofs of most of these.

Proposition 3.11.5 (Cup product in degree zero). In the case i = j = 1, the cup product
is just the inclusion

AG ⊗Z BG ↪→ (A⊗Z B)G

Proof. There's nothing complicated to prove here, just some thinking to do. In terms of
cochains, an element f ∈ C0(G,A) is a function G0 → A. By convention, G0 is the trivial
group, so f ∈ C0(G,A) is essentially a point in A. Lying in the kernel of d0 : C0(G,A) →
C1(G,A) means that

(d0f)(g) = gf − f = 0 ∀g ∈ G
3If A is cyclic, then A⊗A ∼= A, which, given a choice of generator for A, gives a morphism A⊗A→ A.
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which is to say, gf = f , which is to say, f ∈ AG. Of course, we already knew this. But now
thinking about the de�nition of cup product in terms of cochains, for f, f ′ ∈ C0(G,A),

(f ∪ f ′) = f ⊗ f ′ ∈ AG ⊗BG ⊂ (A⊗B)G

Proposition 3.11.6 (Naturality of cup product). The cup product is �natural� in A and B.
More precisely, if φ : A → A′ is a morphism of G-modules and φ∗ : H i(G,A) → H i(G,A′)
is the induced map on homology, then φ⊗ 1 : A⊗B → A′⊗B is a morphism of G-modules,
and (φ ⊗ 1)∗ : H i(G,A ⊗ B) → H i(G,A′ ⊗ B) is the induced map on homology, then for
α ∈ H i(G,A) and β ∈ Hj(G,B),

φ∗(α) ∪ β = (φ⊗ 1)∗(α ∪ β)

Equivalently, the following diagram commutes.

H i(G,A)⊗Z Hj(G,B) H i+j(G,A⊗Z B)

H i(G,A′)⊗Z Hj(G,B) H i+j(G,A′ ⊗Z B)

φ∗⊗Id

∪

(φ⊗Id)∗

∪

The analogous property holds for a morphism ψ : B → B′.

Proof. Theorem 1.9.5 of Shari� [?].

Proposition 3.11.7 (Cup product �commutes� with connecting homomorphisms). If

0→ A1 → A2 → A3 → 0

is a short exact sequence of G modules, and B is a G-module such that the sequence

0→ A1 ⊗B → A2 ⊗B → A3 ⊗B → 0

is also exact, then for α ∈ H i(G,A3) and β ∈ Hj(G,B),

δ(α ∪ β) = (δα) ∪ β ∈ H i+j+1(G,A1 ⊗B)

where the δ maps are connecting homomorphism coming from the long exact sequences. We
can write this as a commutative diagram

H i(G,A3)⊗Hj(G,B) H i+j(G,A3 ⊗B)

H i+1(G,A1)⊗Hj(G,B) H i+j+1(G,A1 ⊗B)

∪

δ⊗1 δ

∪

Proof. This is basically proved by reproving the snake lemma. You work through the whole
process of li�ng, etc. that the snake lemma uses to construct the connecting homomorphisms.
Nothing too fancy, though not super easy to follow. See Theorem 1.9.5 of Shari� [?].
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Remark 3.11.8. There is an analogous property with tensoring applied on the other side of
the exact sequence, though there is a slight issue of a sign, so the resulting equation becomes

δ(α ∪ β) = (−1)iα ∪ (δβ)

where α ∈ H i(G,A), β ∈ Hj(G,B3).

Remark 3.11.9. While the hypotheses of Proposition 3.11.7 seem strange and unlikely to
occur in useful situations, there are several situations where this does happen. First, if B is
a �at (such as free or projective) G-module, then by de�nition the sequence after tensoring
with B remains exact.

Alternately, if the original sequence 0 → A1 → A2 → A3 → 0 is split exact, then since
−⊗B is an additive functor, the sequence after tensoring with B remains split exact. This
happens in the case of the dimension-shifting sequences

0→ A→ CoIndG(A)→ A∗ → 0 0→ A∗ → IndG(A)→ A→ 0

In particular, the previous proposition applied to these split exact sequences is the main
ingredient for why cup products are uniquely determined by these properties, by using a
clever dimension shifting induction.

Proposition 3.11.10 (Uniqueness of cup product). The cup products we have de�ned are
the unique family of maps satisfying the properties above (naturality, description in degree
zero, and interaction with connecting homomorphisms).

Proof. Suppose we have a product with these properties. We show by dimension shifting that
the cup products in degree (i, j) determine cup products in degrees (i+ 1, j) and (i, j + 1).
Consider the short exact sequence

0→ A→ CoIndG(A)→ A∗ → 0

and recall from earlier that it remains exact after tensoring with any B.

0→ A⊗B → CoIndG(A)⊗B → A∗ ⊗B → 0

So by Proposition 3.11.7, we get

H i(G,A∗)⊗Hj(G,B) H i+j(G,A∗ ⊗B)

H i+1(G,A)⊗Hj(G,B) H i+j+1(G,A⊗B)

∪

δ⊗1 δ∼=

∪

Recall that the connecting homomorphisms in the LES associated to 0→ A→ CoIndG(A)→
A∗ → 0 are isomorphisms for i ≥ 1 and surjective for i = 0. Thus the cup product on the
bottom is determined by the cup product on the top.

A similar argument using the other cup product property interacting with connecting
homomorphisms shows that the cup products in degree (i, j) determine those in degree
(i, j + 1).
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Proposition 3.11.11 (Antisymmetry of cup product). Let τ : A ⊗ B → B ⊗ A be the
canonical isomorphism (�twist map�) a⊗b 7→ b⊗a, and let τ∗ : Hk(G,A⊗B)→ Hk(G,B⊗A)
be the induced isomorphism on cohomology. For α ∈ H i(G,A) and β ∈ Hj(G,B),

τ∗(α ∪ β) = (−1)ijβ ∪ α

Since τ, τ∗ are such natural/canonical isomorphisms, this is usually just written as

α ∪ β = (−1)ijβ ∪ α

Proof. Prove �rst in case i = j = 0, then use some dimension shifting to induct. See
Corollary 1.9.7 of Shari� [15].

Proposition 3.11.12 (Associativity of cup product). The cup product is associative. More
precisely, let C be another G-module, and let α ∈ H i(G,A), β ∈ Hj(G,B), γ ∈ Hk(G,C).
Then

(α ∪ β) ∪ γ = α ∪ (β ∪ γ) ∈ H i+j+k(G,A⊗B ⊗ C)

Really, these things don't quite live in the same homology group, but canonical isomorphisms
(A ⊗ B) ⊗ C ∼= A ⊗ (B ⊗ C) induced canonical isomorphisms between the homology groups
that they live in.

Proof. This can be checked directly on the level of cochains, which is tedious. See Proposition
1.9.7 of Shari� [15].

As our �nal list of properties of cup products, we describe how cup product interacts with
Res,Cor, and Inf. For Res and Inf, the relationship is about as simple and convenient as it
could be, though spelling it out in detail requires some careful tracking of where various cup
products are coming and going. The interaction with Cor is a bit weirder, but hey, what can
you do. Math is strange sometimes.

Proposition 3.11.13 (Cup product and Res, Inf, Cor). Under suitable hypotheses and
su�cient abuse of notation,

Res(α ∪ β) = Res(α) ∪ Res(β)

Inf(α ∪ β) = Inf(α) ∪ Inf(β)

Cor(α) ∪ β = Cor(α ∪ Res(β))

We now spell out the suitable hypotheses and various abuses of notation in gory detail, which
may be skipped. Let A,B be G-modules.

1. Let H ⊂ G be a subgroup. Consider the restriction maps

ResA : H i(G,A)→ H i(H,A)

ResB : H i(G,B)→ H i(H,B)

ResA⊗B : H i(G,A⊗Z B)→ H i(H,A⊗Z B)
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For α ∈ H i(G,A) and β ∈ Hj(G,B),

ResA⊗B(α ∪ β) = ResA(α) ∪ ResB(β) ∈ H i+j(H,A⊗Z B)

We have slightly abused notation by using ∪ to refer to two di�erent maps. Usually,
notation is further abused by using Res to refer to all three restriction maps, and this
is written as

Res(α ∪ β) = Res(α) ∪ Res(β)

This can also be expressed by the following commutative diagram.

H i(G,A)⊗Z Hj(G,B) H i+j(G,A⊗Z B)

H i(H,A)⊗Z Hj(H,B) H i+j(H,A⊗Z B)

∪

ResRes Res

∪

This is a bit confusing. It is just saying that the following two squares commute.

H i(G,A) H i+j(G,A⊗Z B) H i(G,B) H i+j(G,A⊗Z B)

H i(H,A) H i+j(H,A⊗Z B) H i(H,B) H i+j(H,A⊗Z B)

−∪β

Res Res

α∪−

Res Res

−∪Res(β) Res(α)∪−

2. Let N ⊂ G be a normal subgroup. Consider the in�ation maps

InfA : H i(G/N,AN)→ H i(G,A)

InfB : H i(G/N,BN)→ H i(G,B)

InfA⊗B : H i(G/N, (A⊗Z B)N)→ H i(G,A⊗Z B)

and the inclusion
ι : AN ⊗Z BN ↪→ (A⊗Z B)N

with induced map

ι∗ : H i
(
G/N,AN ⊗Z BN

)
→ H i

(
G/N, (A⊗Z B)N

)
For α ∈ H i(G/N,AN) and β ∈ Hj(G/N,BN),

InfA⊗B(ι∗(α ∪ β)) = InfA(α) ∪ InfB(β) ∈ H i+j(G,A⊗Z B)

We have slightly abused notation by using ∪ to refer to two di�erent maps. Usually,
notation is further abused by using Inf to refer to all three in�ation maps, and the ι∗

map is �obvious,� so this is written as

Inf(α ∪ β) = Inf(α) ∪ Inf(β)
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This can also be expressed by the following commutative diagram.

H i(G/N,AN)⊗Z Hj(G/N,BN) H i+j(G/N,AN ⊗Z BN)

H i(G,A)⊗Z Hj(G,B) H i+j(H,A⊗Z B)

∪

InfInf Inf ◦ι∗

∪

This is a bit confusing. It is just saying that the following two squares commute.

H i(G/N,AN) H i+j(G/N,AN ⊗Z BN) H i(G/N,BN) H i+j(G/N,AN ⊗Z BN)

H i(G,A) H i+j(H,A⊗Z B) H i(G,B) H i+j(H,A⊗Z B)

−∪β

Inf Inf ◦ι∗

α∪−

Inf Inf ◦ι∗

−∪Inf(β) Inf(α)∪−

3. Let H ⊂ G be a subgroup of �nite index. Consider the corestriction and restriction
maps

CorA : H i(H,A)→ H i(G,A)

CorA⊗B : H i(H,A⊗Z B)→ H i(G,A⊗Z B)

ResB : Hj(G,B)→ Hj(H,B)

For α ∈ H i(H,A) and β ∈ Hj(G,B),

CorA(α) ∪ β = CorA⊗B(α ∪ ResB(β)) ∈ H i+j(G,A⊗Z B)

We have slightly abused notation by using ∪ to refer to two di�erent maps. Usually,
notation is further abused by writing

Cor(α) ∪ β = Cor(α ∪ Res(β))

This can also be expressed by the following commutative diagram.

H i(G,A)⊗Z Hj(G,B) H i+j(G,A⊗Z B)

H i(H,A)⊗Z Hj(H,B) H i+j(H,A⊗Z B)

∪

Res

∪

Cor Cor

The diagram above is a bit confusing. It is really just saying that the following two
squares commute.

H i(G,A) H i+j(G,A⊗Z B) Hj(G,B) H i+j(G,A⊗Z B)

H i(H,A) H i+j(H,A⊗Z B) Hj(H,B) H i+j(H,A⊗Z B)

−∪β Cor(α)∪−

ResCor

−∪Res(β)

Cor

α∪−

Cor

Proof. Shari� 1.9.10 [15]. Can you imagine going through a detailed proof of this? Just
thinking about it makes me want to crawl into bed.
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3.12 Pro�nite cohomology

Now that we have various tools of group cohomology under our belts, it is time to get
some topology involved. This is not the connection to algebraic topology and homol-
ogy/cohomology theories there. Instead, we will add additional structure to our group
cohomology groups H i(G,A) by adding topological structure to the group G.

In particular, we will study the case where G is a pro�nite group, which comes with
associated topological data. There will also be a little bit of topological structure on our
module A, but not really, because we will only really care about the discrete topology on A.
This topological structure translates to some restriction of the G-action on A, that is, will
we require it to be �continuous,� whatever that will mean. Basically, the action plays nicely
with the topologies.

This additional structure is not so much motivated by the additional results we get by
adding these constraints, but more motivated by the fact that pro�nite groups arise in the
context that we want to know about. That context is Galois groups. We already know that
in�nite Galois groups are pro�nite groups (Proposition 2.3.1). In particular, we'll look at the
absolute Galois group of a �eld K and various modules for it, and the associated cohomology
groups.

The group cohomology groups in this context are invariants of the �eld K, and very im-
portant invariants at that. First, there are some cohomological reinterpretations of classical
results, such as Hilbert's Theorem 90. But the really big part of it is the connection to the
Brauer group of K. Much later, we will see that one of the H2 groups is isomorphic to the
Brauer group. This will be extremely useful for knowing things about the Brauer group,
because we have so many great tools in group cohomology.

3.12.1 De�nition of pro�nite cohomology

The �rst thing to do is reworking a little bit of our de�nition of cohomology groups to take
into account the additional structure involved when G is a pro�nite group. This will be a
mostly small change. After this, we will mostly just assert that all of our tools for regular
group cohomology translate/have analogs in pro�nite cohomology.

De�nition 3.12.1. Let G be a topological group 4. A topological G-module A is a
topological abelian group with G-action such that the G-action is a continuous map G×A→
A. A discrete topological G-module is an abelian group A which is a topological G-
module with respect to the discrete topology on A.

Proposition 3.12.2. Let G be a topological group and A be a G-module. The following are
equivalent.

1. Giving A the discrete topology makes A into a discrete topological G-module.

2. The stabilizer of each a ∈ A is an open subgroup of G.

4A topological group is a group with a topology such that the multiplication and inversion maps are
continuous.
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Proof. Shari� 2.2.3 [15].

De�nition 3.12.3. Let A be a topological G-module. For i ∈ Z the group of continuous
i-cochains with coe�cients in A is

Ci
cts(G,A) =

{
f : Gi → A | f is continuous

}
The same formula for the di�erential as in De�nition 3.2.4 gives boundary maps making
C•cts(G,A) into a chain complex. The pro�nite cohomology group H i

cts(G,A) is the ith
homology of C•cts.

Because writing the subscript cts is tedious, whenever G is a pro�nite group, we just write
H i(G,A) instead ofH i

cts(G,A). However, the careful reader should note that in general, these
may be very di�erent groups. If G is a discrete group (such as a �nite group), then the two
meanings for H i(G,A) agree, so this is not a terrible abuse of notation.

Remark 3.12.4. The notion of compatible pairs for pro�nite groups and topological modules
are de�ned in analogy with the case where no topology is involved, with the requirement
that all the maps involved be continuous. As before, compatible pairs now induce maps on
pro�nite cohomology. In particular, there are in�ation, restriction, etc. maps as before, as
long as the subgroup involved is a closed subgroup.

Alternately, one can de�ne in�ation/restriction maps on pro�nite cohomology by tak-
ing the direct limit of in�ation/restriction maps, with direct limit taken in the context of
Proposition 3.12.6. Thankfully, these de�nitions are equivalent (proof omitted).

Remark 3.12.5. The following proposition may viewed as an alternate approach to de�ning
pro�nite cohomology (such as the approach in Gille and Szamuely [4]). In our approach, we
view the following as a theorem instead.

Proposition 3.12.6. Let G be a pro�nite group, and let U be the set of open normal sub-
groups of G. Let A be a discrete G-module. Then

H i(G,A) ∼= lim−→
N∈U

H i(G/N,AN)

where the maps of the directed system are in�ation maps.

Proof. Proposition 2.2.16 of Shari� [15].

Remark 3.12.7. In particular, in the case where L/K is a Galois extension and G =
Gal(L/K), by the Galois correspondence, the set of open normal subgroups of G is the set
of subgroups Gal(L/E) where E/K is �nite Galois. For the modules (L,+) and (L×,×),
the above isomorphism is

H i(Gal(L/K), L×) ∼= lim−→
E∈E

H i

(
Gal(L/K)

Gal(L/E)
, (L×)Gal(L/E)

)
∼= lim−→

E∈E
H i(Gal(E/K), E×)

H i(Gal(L/K), L) ∼= lim−→
E∈E

H i

(
Gal(L/K)

Gal(L/E)
, LGal(L/E)

)
∼= lim−→

E∈E
H i(Gal(E/K), E)
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where E is the set of �nite Galois intermediate extensions K ⊂ E ⊂ L.
One place this is very useful is if we want to show that H1(Gal(L/K), L×) is zero (which

we will do later in Theorem 3.12.12). Because it is determined by the cohomology groups for
E/K �nite Galois, it su�ces to show that all of the cohomology groups for H1(Gal(E/K), E)
are zero, since the direct limit of trivial groups is the trivial group. And it is easier to work
with the �nite group Gal(E/K) rather than to work with Gal(L/K) if [L : K] is in�nite.

As we mentioned before, most of our tools from regular group cohomology translate perfectly
into pro�nite cohomology. One such tool is the long exact sequence.

Proposition 3.12.8 (Long exact sequence on pro�nite cohomology). Let G be a pro�nite
group. A short exact sequence 0 → A → B → C → 0 of discrete topological G-modules
induces a long exact sequences on pro�nite cohomology.

0→ H0(G,A)→ H0(G,B)→ H0(G,C)→ H1(G,A)→ · · ·

Remark 3.12.9. The analog of the in�ation restriction exact sequence (3.9.20) holds in the
case of pro�nite cohomology.

3.12.2 H1(G,M) for G pro�nite, M discrete, torsion free, �nitely
generated

On a �rst pass reading, this section can be skipped without any issues. It's just an application
of the in�ation restriction sequence for pro�nite cohomology to get a �niteness result.

Remark 3.12.10. Let G be a pro�nite group. Recall Proposition 2.2.2, which tells us that
that a subgroup is open if and only if it is closed and of �nite idex.

{open subgroups} = {closed subgroups of �nite index}

Additionally, a closed subset of a compact set is compact, and since G is Hausdor�, a compact
set is closed. Thus

{closed subgroups} = {compact subgroups}
{open subgroups} = {closed subgroups of �nite index} = {compact subgroups of �nite index}

Proposition 3.12.11. Let G be a pro�nite group and M a discrete G-module which is
torsion free and �nitely generated as an abelian group. Then H1(G,M) is �nite.

Proof. Letm1, . . . ,mn be a set of generators forM . Set Gi = stab(mi). SinceM is a discrete
module, Gi is open in G. Then set

GM =
n⋂
i=1

Gi

and note that GM is also open, since it is a �nite intersection of open sets. GM acts trivially
on generators of M , so it acts trivially on all of M . Consider the conjugation action of G on
its set of subgroups.

G× {subgroups H ⊂ G} → {subgroups H ⊂ G} g ·H = gHg−1
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For the subgroup GM , the stabilizer of this action is the normalizer stab(GM) = NG(GM),
and the orbit is the set of conjugate subgroups. Because GM is open, it has �nite index,
and because GM ⊂ NG(GM), the normalizer also has �nite index. By the orbit-stabilizer
theorem, the size of the orbit is equal to the index of the stabilizer, so the size of the orbit
is �nite, which is to say, GM has �nitely many conjugate subgroups. Thus we have a �nite
intersection

N =
⋂
g∈G

gGMg
−1

so N is a �nite index open subgroup. It is clear that N is normal, and that N acts trivially on
M , soMN = M . SinceN acts trivially onM , the decompositionM ∼= ⊕Z is a decomposition
of N -modules, so

H1(N,M) = H1(N,⊕Z) ∼=
⊕

H1(N,Z) ∼= Homcts(N,Z)

Since N is an open subgroup of a �nite index in a pro�nite group, it is also compact, so the
image of N under a continuous homomorphism N → Z is a compact subgroup of Z, which
is to say, it is trivial. Thus Hom(N,Z) = 0, so H1(N,M) = 0. Now consider the �rst three
nonzero terms of the In�ation-Restriction sequence.

0 H1(G/N,MN) H1(G,M) H1(N,M) = 0

By exactness, H1(G,M) ∼= H1(G/N,MN) = H1(G/N,M). Recall that G/N is �nite, so
from the restriction-corestriction sequence, we know that H1(G/N,M) is torsion of exponent
dividing |G/N |. Since M is �nitely generated, H1(G/N,M) is �nitely generated. Thus
H1(G/N,M) is a torsion and �nitely generated abelian group, so it is �nite. Thus H1(G,M)
is also �nite.

3.12.3 Hilbert 90

Now we return to the situation which we really care about, which is pro�nite cohomology for
in�nite Galois groups. As mentioned previously, it is very useful to know that the pro�nite
cohomology is the direct limit of regular cohomology groups with �nite groups.

We start with a generalization of Hilbert Theorem 90, from which we derive the classical
Hilbert Theorem 90. Then we also have an �additive� verison of Hilbert 90, which not
necessarily useful, but tells us that there is �nothing to see� in terms of cohomology for the
absolute Galois group acting on the additive group of a �eld, because all of the cohomology
groups vanish.

In contrast, the multiplicative Hilbert 90 (our original generalization) says that the �rst
cohomology group (of the absolute Galois group acting on the multiplicative group of a �eld)
vanishes, but higher groups need not vanish. So it is somewhat natural to expect that these
higher cohomology groups are interesting invariants of the �eld, and this is indeed the case.
In particular, just the next cohomology group turns out to be isomorphic to the Brauer
group.

Theorem 3.12.12 (Pro�nite multiplicative Hilbert 90). Let L/K be a Galois extension.
Then H1(Gal(L/K), L×) = 0.
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Proof. By Lemma 2.3.1, G = Gal(L/K) is the inverse limit of Galois groups of �nite exten-
sions, so if we prove the result for �nite extensions, we get the result on in�nite extensions
for free. So we may assume L/K is �nite (so G is �nite).

For clarity, we write · for multiplication in L×. Let f : G→ L× be a cocycle, that is, for
τ, σ ∈ G, 5

f(τσ) = τ
(
f(σ)

)
· f(τ)

The elements σ ∈ G are distinct characters L× → L, so they are linearly independent by
linear independence of characters (Theorem 7 of Section 14.2 of Dummit and Foote [3]).
Thus ∑

σ∈G

f(σ)σ

is a nonzero map (since f(σ) 6= 0). Let α ∈ L× so that

β =
∑
σ∈G

f(σ) · σ(α) 6= 0

Then for τ ∈ G,

τ−1(β) = τ−1
∑
σ∈G

f(σ) · σ(α)

=
∑
σ∈G

τ−1
(
f(σ) · σ(α)

)
linearity

=
∑
σ∈G

(
τ−1f(σ)

)
·
(
τ−1σ(α)

)
τ is a �eld hom

=
∑
g∈G

(
τ−1f(τg)

)
· g(α) substitute g = τ−1σ

=
∑
σ∈G

(
τ−1f(σ)

)
· σ(α) substitute g = σ

=
∑
σ∈G

τ−1
(
f(τ) · τ

(
f(σ)

))
· σ(α) f is a cocycle

=
∑
σ∈G

τ−1(f(τ)) · f(σ) · σ(α) τ is a �eld hom

= τ−1
(
f(τ)

)
·
∑
σ∈G

f(σ) · σ(α) linearity

= τ−1
(
f(τ)

)
· β

Applying τ to both sides,

β = f(τ) · τ(β) f(τ) =
β

τ(β)
=
τ(β−1)

β−1

5This may be confusing, since usually the cocycle condition would be written f(τσ) = τf(σ) + f(τ) but
this is when the G-module is written additively, and here we are writing our G-module L× multiplicatively.
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Thus f is a coboundary. 6

The vanishing of this cohomology group leads back to the classical version of Hilbert Theorem
90 by using our knowledge of Tate cohomology for �nite cyclic groups.

Theorem 3.12.13 (Classical multiplicative Hilbert 90). Let L/K be a �nite cyclic Galois
extension, let NL

K : L× → K× be the norm map, and let σ ∈ Gal(L/K) be a generator. Then

ker NL
K =

{
σβ

β

∣∣∣∣ β ∈ L×}
Proof. Let G = Gal(L/K) and n = [L : K] = |G|. Since σ generates G, the element
σ − 1 ∈ Z[G] generates IG, hence right hand side is exactly IGL

×. Thus the claim is
equivalent to either of the following.

ker NL
K = IGL

× ker NL
K /IGL

× = 0

Note that the �eld norm map NL
K coincides with the group norm map NG, as shown below.

NG(β) =

(
n−1∑
i=0

σi

)
β =

n−1∏
i=0

(σiβ) = NL
K(β)

(Since we write L× multiplicatively, the sum becomes a product). By de�nition of Tate
cohomology,

Ĥ−1(G,L×) = kerNG/IGL
× = ker NL

K /IGL
×

Thus the claim reduces to showing Ĥ−1(G,L×) = 0. Since G is cyclic,

Ĥ−1(G,L×) ∼= Ĥ1(G,L×) = H1(G,L×) = 0

with the �nal equality from Theorem 3.12.12.

Before we can prove the additive version of Hilbert Theorem 90, we need to cite a result
without proof.

Theorem 3.12.14 (Normal basis theorem). Let L/K be a �nite Galois extension. Then
there exists α ∈ L such that

{σ(α) : σ ∈ Gal(L/K)}

is a K-basis of L.

Proof. (Not a proof.) Usually the proof is broken into cases where K is �nite/in�nite. The
�nite case is not hard, since in that case G is cyclic. (Sorry, I couldn't �nd a good reference
for this. Probably in Lang somewhere, but I don't have my copy handy at the moment.)

6Again, this looks a bit strange since things are written multiplicatively instead of additively, but it is
right. The usual coboundary condition for f to be a degree one coboundary is that there exists x in the
module such that f(τ) = τ(x)− x, but in multiplicative notation it becomes f(τ) = τx

x .
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Remark 3.12.15. Let L/K be a �nite Galois extension and G = Gal(L/K). Then L is a
K[G]-module via

K[G]× L→ L

(∑
σ∈G

λσσ

)
· x =

∑
σ∈G

λσσ(x)

where λσ ∈ K. Another way to interpret the normal basis theorem is that L ∼= K[G] as a
K[G]-module. Let α be the element of the normal basis theorem. Then

L→ K[G]
∑
σ∈G

λσσ(α) 7→
∑
σ∈G

λσσ

is an isomorphism of K[G]-modules.

Theorem 3.12.16 (Generalized additive Hilbert 90). Let L/K be a Galois extension. Then

H i(Gal(L/K), L) = 0

for all i ≥ 1.

Proof. As in the previous proof, Remark 3.12.7, which says

H i(Gal(L/K), L) ∼= lim−→H i(Gal(E/K), E)

allows us to reduce to the case of a �nite Galois extension. So assume L/K is �nite, and let
G = Gal(L/K). By the normal basis theorem, L ∼= K[G] as a K[G]-module, and this is also
an isomorphism of G-modules. Thus

L ∼= K[G] ∼= Z[G]⊗Z K ∼= IndG(K) ( ∼= of G-modules)

Thus H i(G,L) = 0 for i ≥ 1 since cohomology always vanishes for induced/coinduced
modules.

3.12.4 Kummer theory

One way to think about the starting point for Kummer theory is the following: hey, I
noticed that Hilbert 90 says that H1(Gal(L/K), L×) = 0, maybe I can �t this into a long
exact sequence somewhere and make some conclusions from the fact that some of the terms
are zero.

This is often a great way to obtain results in homological algebra, and this case is no
exception. We can in fact �t H1(Gal(L/K), L×) into some long exact sequences, and get
some quite interesting results out of doing so.

De�nition 3.12.17. Let n be a positive integer and let K be a �eld of characteristic not
dividing n, and let µn ⊂ Ksep be the group of nth roots of unity. The Kummer sequence
is the short exact sequence

1 µn (Ksep)× (Ksep)× 1n

This is a short exact sequence of discrete Gal(Ksep/K)-modules.
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Remark 3.12.18. The requirement that charK not divide n is just so that the polynomial
xn−1 ∈ K[x] is separable. The formal derivative is nxn−1 = 0 if n divides the characteristic,
so in this case xn−1 is not separable. The requirement is satsi�ed in any �eld of characteristic
zero, such as a number �eld, as an important example.

For the next result, we are going to jump ahead and use Proposition 4.5.9, which says that

Br(K) ∼= H2(Gal(Ksep/K), (Ksep)×)

For the moment, it is totally reasonable to just think of this as the de�nition of Br(K).
Eventually we will have another de�nition which is not in terms of group cohomology at all,
but that takes a lot of build up to de�ne, which we will get to later.

Theorem 3.12.19 (Kummer isomorphisms). Let K be a �eld of characteristic not dividing
n and let GK = Gal(Ksep/K) be the absolute Galois group. Then

H1(GK , µn) ∼= K×/K×n H2(GK , µn) ∼= n Br(K)

where the n denotes n-torsion.

Proof. This basically follows from considering the long exact sequence on pro�nite coho-
mology Hn(GK ,−) associated to the Kummer sequence, along with using the multiplicative
version of Hilbert 90 (Proposition 3.12.12). The long exact sequence looks like

0 H0(GK , µn) H0(GK , (K
sep)×) H0(GK , (K

sep)×)

H1(GK , µn) H1(GK , (K
sep)×) H1(GK , (K

sep)×)

H2(GK , µn) H2(GK , (K
sep)×) H2(GK , (K

sep)×) · · ·

n

n

n

By basic Galois theory, H1(GK , (K
sep)×) = K×, and by Hilbert 90, H1(GK , (K

sep)×) = 0.
From the remark above, H2(GK , (K

sep)×) = Br(K), so we get two exact sequences

K× K× H1(GK , µn) 0

0 H2(GK , µn) Br(K) Br(K)

n

n

By the 1st isomorphism theorem applied to the �rst sequence, H1(GK , µn) ∼= K×/K×n, and
by exactness of the second sequence, H2(GK , µn) ∼= n Br(K).

The next result is an application of the in�ation-restriction sequence 3.9.20 and some Kum-
mer theory. It's not nearly as important to read at this stage, so it can be safely skipped
over on a �rst pass.

Proposition 3.12.20 (Exercise 4.3 of Gille & Szamuely [4]). Let m ∈ Z≥2 and let K be a
�eld containing a primitive m2th root of unity. Let a ∈ K such that a has no mth root in K,
and let α be a root of xm − a = 0 in Ksep, and let L = K(α), so that Gal(L/K) ∼= Z/mZ.
Then
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1. (L×/L×m)Gal(L/K) is generated by (the image of) K× and α.

2. The cokernel of K×/K×m → (L×/L×m)Gal(L/K) is (isomorphic to) Z/mZ.

Proof. Let µm ⊂ K be the group of mth roots of unity. Consider the tower K ⊂ L ⊂ Ksep =
Lsep, and consider the �rst four terms of the in�ation-restriction sequence 3.9.20.

0 H1(Gal(L/K), µm) H1(Gal(Ksep/K), µm)

H1(Gal(Ksep/L), µm)Gal(L/K) H2(Gal(L/K), µm)

Inf

Res

Since µm ⊂ K, the action of Gal(L/K) on it is trivial, so

H1(Gal(L/K), µm) ∼= Hom(Gal(L/K), µm) ∼= Hom(Z/mZ,Z/mZ) ∼= Z/mZ

By the computation of Tate cohomology for �nite cyclic groups 3.7.8,

H2(Gal(L/K), µm) ∼= Ĥ0(Gal(L/K), µm) ∼= µGal(L/K)
m /NGµm ∼= µm/mµm ∼= Z/mZ

By Kummer theory,

H1(Gal(Ksep/K, µm) ∼= K×/K×m H1(Gal(Ksep/L), µm) ∼= L×/L×m

So the in�ation restriction sequence may be rewritten as

0→ Z/mZ j−→ K×/K×m
i−→ (L×/L×m)Gal(L/K) f−→ Z/mZ

with i induced by the inclusion K× ↪→ L×. Let ζ ∈ K be a primitive m2th root of unity,
and ω = ζm be a primitive mth root of unity. Recall from the hypothesis that we have α
which is an mth root of some a ∈ K×. We claim that α ∈ (L×/L×m)Gal(L/K). The Galois
conjugates of α are ωα, . . . , ωm−1α but ω = ζm so α di�ers from its Galois conjugates by an
element of L×m. Thus the class of α in L×/L×m is �xed by Gal(L/K).

Now consider the subgroup A = 〈a〉 generated by the class of a in K×/K×m. Since xm−a
is irreducible, this subgroup has order m. Since a = αm ∈ L×m, A ⊂ ker i = im j. Thus
ker i ∼= Z/mZ. Then by the 1st isomorphism theorem,

coker i = (L×/L×m)Gal(L/K)/ im i = (L×/L×m)Gal(L/K)/ ker f ∼= im f ⊂ Z/mZ

Now consider the subgroup B = 〈α〉 generated by the class of α in (L×/L×m)Gal(L/K). Since
no lower power than m is an mth power in L×, B ∼= Z/mZ. Since ker f = im i and
α, α2, . . . , αm−1 6∈ im i, they are not in the kernel of f , so f(α) generates a cyclic subgroup of
Z/mZ of order m, hence f is surjective, and coker i ∼= Z/mZ. This proves (2) in the original
statement. Now we have an exact sequence

0→ im i→ (L×/L×m)Gal(L/K) → (L×/L×m)Gal(L/K)/B → 0

Thus (L×/L×m)Gal(L/K) is generated by i(K×) and α, which proves (1).
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3.13 Computations of group cohomology

In this section we collect some group cohomology computations which are not important for
later, but useful as exercises and ways to practice using various tools in group cohomology.

First, we do a computation of the matrix group GLn(K) acting via left multiplication
on column vectors Kn, which turns out to be zero most of the time. Then we have a result
which is not about computation cohomology, but rather about what a particular cohomology
group implies about the original group.

3.13.1 Hr(GLn(K), Kn) = 0 for r ≥ 0, charK 6= 2

One somewhat common group is the group of invertible matrices GLn(K) with entries from
an arbitrary �eldK. This group acts on the space of column vectorsKn by left multiplication,
so we have a situation where we can take group cohomology.

However, it turns out that the cohomology groups are all zero, at least when the �eld
K does not have characteristic 2. There is not much our method can say about that case,
unfortunately.

De�nition 3.13.1. Let G be a group and M a G-module. Fix x ∈ G, and de�ne

α : G→ G g 7→ xgx−1

β : M →M m 7→ x−1m

Then α, β form a compatible pair, which is to say, the following diagram commutes for any
g ∈ G.

M M

M m

β

α(g) g

β

Consequently, the maps

Cr(G,M)→ Cr(G,M) f 7→ βfαr

on cochains induce maps on homology

ψα,β,r : Hr(G,M)→ Hr(G,M) [f ] 7→ [βfαr]

Proposition 3.13.2. Let G,M,α, β be as above. The maps ψα,β,r : Hr(G,M)→ Hr(G,M)
are the identity for all G-modules M and all r ≥ 0.

Proof. We prove this by induction on r using the technique of dimension shifting. For r = 0,
a cocycle f : G0 →M is identi�ed with an element of MG, and

βfα0 = x−1f = f

hence the induced map on cochains is the identity, so the induced map on H0 is also the
identity. Let r ≥ 1 and assume that the maps ψα,β,r−1 : Hr−1(G,M)→ Hr−1(G,M) are the
identity for all M . Consider the usual short exact sequence

0→M → CoIndG(M)→M∗ → 0
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Since r ≥ 1, Hr(G,CoIndG(M)) = 0, so using the long exact sequences of cohomology we
have the following diagram with exact rows, where δ is the connecting homomorphism.

Hr−1(G,M∗) Hr(G,M) 0

Hr−1(G,M∗) Hr(G,M) 0

δ

ψα,β,r=Id ψα,β,r

δ

By thinking about how the connecting homomorphism is constructed, we see that this di-
agram commutes (for more details, see Lemma 3.13.3). Thus since ψα,β,r is the identity
on Hr−1(G,M∗), by commutativity, it is the identity on Hr(G,M). This completes the
induction.

Lemma 3.13.3. The diagram from the previous proposition commutes.

Hr−1(G,M∗) Hr(G,M)

Hr−1(G,M∗) Hr(G,M)

δ

ψα,β,r=Id ψα,β,r

δ

Proof. We call the map CoIndG(M) → M∗ by χ. Recall the description of the connecting
homomorphism from the snake lemma: if [φ] ∈ Hr−1(G,M∗) is represented by a cocycle

φ : Gr−1 → M∗, there is a lift φ̂ : Gr−1 → M∗, which is to say, χφ̃ = φ. (The lift φ̃ is not
unique, but we are free to choose any lift.)

CoIndG(M)

Gr−1 M

χ

φ

φ̃

Then δ can be desribed by
δ[φ] = [dφ̃]

where d is the boundary map of C•(G,M∗). So going around the top of the square, we get

ψα,β,rδ[φ] = ψα,βr

[
dφ̃
]

=
[
β ◦ dφ̃ ◦ αr

]
and from the bottom of the square we get

δψα,β,r[φ] = δ [βφαr] =
[
d
(
β̃φαr−1

)]
where β̃φαr−1 is any lift making the following diagram commute.

CoIndG(M)

Gr−1 M

χ

βφαr−1

˜βφαr−1
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Now observe the following hideous diagram.

CoIndG(M)

CoIndG(M)

Gr−1 Gr−1 M M

χ

β

χ

αr−1

˜βφαr−1

φ

φ̃

β

Since χ is a G-homomorphism, χβ = βχ, so this whole diagram commutes. That is to say,

βφ̃αr−1 = β̃φαr−1

is a suitable lift of βφαr−1 for computing δ, so

δψα,βr [φ] =
[
d
(
β̃φαr−1

)]
=
[
d
(
βφ̃αr−1

)]
Thus to complete the proof of commutativity, it su�ces to show that

β ◦ dφ̃ ◦ αr = d
(
βφ̃αr−1

)
for any cochain φ̃. This equality is �immediate� from the de�nitions of d, α, β, in the sense
that it takes a fair amount of boring and/or trivial algebraic manipulation.

Remark 3.13.4. The previous lemma didn't actually use any special properties of the
sequence 0 → M → CoIndG(M) → M∗ → 0, or any particular aspect of the map χ, so the
lemma could be stated more generally in terms of any short exact sequence, saying that the
maps ψα,β commute with connecting homomorphisms. In more sophisticated language, this
says that the maps ψα,β give a morphism of δ-functors from Hr(G,−) to itself.

Proposition 3.13.5. Let K be a �eld and let G = GLn(K),M = Kn with the usual G-action
by left matrix multiplication. Let x = − Id ∈ GLn(K), and consider the corresponding maps
α, β associated to x as in De�nition 3.13.1. Then

1. For r ≥ 0, the maps Hr(G,M) → Hr(G,M) induced by the compatible pair α, β are
− Id.

2. If charK 6= 2, Hr(G,M) = 0 for r ≥ 0.

Proof. (1) On the level of cochains, the maps induced by , α, β are

Cr(G,M)→ Cr(G,M) φ 7→ β ◦ φ ◦ αr

In this instance, since g0 is central, α : G → G is the identity map, so αr : Gr → Gr is the
identity map. The map β : Kn → Kn is just multiplication by (− Id)−1 = − Id, so the map
on cochains is just − Id. Thus the induced map Hr(G,M)→ Hr(G,M) is also − Id.

(2) By Proposition 3.13.2, the induced maps Hr(G,M) → Hr(G,M) from α, β are the
identity, but by part (1), the same induced maps are also − Id. Since charK 6= 2,

Id = − Id =⇒ 2 Id = 0 =⇒ Id = 0

Thus identity map on Hr(G,M) is the zero map, which is to say, it is the trivial group.
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3.13.2 H1(G,Fp) ∼= Fnp gives generators for a p-group G

Let p be a prime. Recall that a p-group is a group G whose order is a power of p. We
view Fp (or by another name Z/pZ) as a trivial module for any group. In this section, we
investigate what happens if H1(G,Fp) ∼= HomZ(Gab,Z/pZ) happens to be isomorphic to Fnp .
This happens, for example, if Gab ∼= Z/pZn. We start with some classic �xed point results
and results about subgroups of p-groups.

Lemma 3.13.6. Let G be a �nite p-group.

1. If G acts on a �nite set X, then |X| ≡ |XG| mod p, where XG is the set of �xed points.

2. If H ⊂ G is a proper subgroup, then NG(H) 6= H.

3. If H ⊂ G is a proper subgroup, then H is contained in a normal subgroup. In particular,
if H is not normal, then H is contained in a proper normal subgroup.

4. G has a nontrivial proper normal subgroup.

5. Let N ⊂ G be a nontrivial proper normal subgroup. Then G has a chain of subgroups

1 ⊂ H2 ⊂ H3 ⊂ · · · ⊂ N ⊂ · · · ⊂ G

where |Hi| = pi. (There is a subgroup of each p-power order in the chain.)

6. G has a chain of subgroups

1 ⊂ H2 ⊂ H3 ⊂ · · · ⊂ G

where |Hi| = pi. (There is a subgroup of each p-power order in the chain.)

7. If H ⊂ G is a proper subgroup, then H is contained in a normal subgroup of index p.

Proof. (1) Write X as a disjoint union of orbits, which gives an equality in terms of sizes.

X =
⊔
x∈I

orb(x) =⇒ |X| =
∑
x∈I

| orb(x)|

If we let J ⊂ I denote the subset corresponding to orbits of size greater than one, this gives

|X| = |XG|+
∑
x∈J

| orb(x)| (3.13.1)

By the orbit-stabilizer theorem,

| orb(x)| = |G|
| stab(x)|

Since G is a p group, this implies | orb(x)| ≡ 0 mod p for x ∈ J . Thus by equation 3.13.1,
the terms of the sum all vanish modulo p, and we obtain |X| ≡ |XG| mod p.
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(2) If H is the trivial subgroup, the normalizer is all of G and the result is immediate,
so we may assume H is nontrivial. Let X = G/H be the set of left cosets of H in G, and
let H act on X by left multiplication.

H ×G/H → G/H h · gH = hgH

Note that the coset H is a �xed point of this action. Since |G/H| ≡ 0 mod p, and there
is at least one �xed point, there are at least p �xed points by (1). Thus there is a coset
gH 6= H which is a �xed point, with a representative g ∈ G \H, that is, hgH = gH for all
h ∈ H. Rearranging this to g−1hgH = H says that g−1hg ∈ H for all h ∈ H, which is to
say, g ∈ NG(H). Thus g ∈ NG(H) \H so NG(H) 6= H.

(3) Consider the chain of subgroups

H ⊂ NG(H) ⊂ NG(NG(H)) ⊂ · · · ⊂ G

Since this is a �nite chain, some normalizer N appearing has NG(N) = G, hence N is normal.
Thus H is contained in a normal subgroup. If H is not normal, then NG(H) 6= G, so one of
the normalizers is a proper normal subgroup containing H.

(4) By Cauchy's theorem, G has an element of order p which generates a subgroup H of
order p. If H is normal, then we are done. If H is not normal, then by (3) H is contained
in a nontrivial proper normal subgroup.

(5) We proceed by induction on the order of G. The case |G| = p is trivial. Now assume
the result holds for |G| < pk for some k, and let G be a group of order pk.

By inductive hypothesis, N (and hence G) has a full chain of subgroups of p-power order
up to |N |. Also by inductive hypothesis, G/N has a full chain of subgroups of p-power order
up to |G/N |, and by the correspondence between subgroups of G/N and subgroups of G
containing N , the chain of subgroups of G/N corresponds to a full chain subgroups from N
to G.

(6) Immediate from (5).
(7) Any subgroup whose index is the smallest prime dividing |G| is normal, so any

subgroup of G of order |G|/p is normal, so it su�ces to show that a proper subgroup H is
contained in a subgroup of order |G|/p. By (3), H is contained in a normal subgroup, and
then by (5) that normal subgroup is contained in a subgroup of index p.

Proposition 3.13.7. Let G be a �nite p-group and let L = Gab ⊗ Fp = G/Gp[G,G]. Let
N = Gp[G,G]. Suppose x1, . . . , xn ∈ G are such that x1N, . . . , xnN generate L. Then
x1, . . . , xn generate G.

Proof. Let H = 〈x1, . . . , xn〉 be the subgroup generated by x1, . . . , xn, and suppose H 6= G.
Then by Lemma 3.13.6 part 7, there exists a proper normal subgroup M of index p such
that H ⊂M .

Since H ⊂ M , M/(M ∩ N) ∼= G/H. Also, G/M ∼= Z/pZ, and since this is abelian,
[G,G] ⊂M . Also Gp is in the kernel of G→ G/M , which is M , so N ⊂M , so M ∩N = N .
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Then we have the following commutative diagram with exact rows.

1 M ∩N M M�M ∩N 1

1 N G G/N 1

Z/pZ

1

∼=

But by the �ve lemma (for groups), the middle map must be an isomorphism, which is a
contradiction. Hence H = G.

Remark 3.13.8. There is another way to prove Proposition 3.13.7 by developing some
theory about Frattini subgroups. The Frattini subgroup Φ(G) is the intersection of all
proper maximal subgroups. Roughly, the outline of that approach is as follows.

1. If G is a p-group and H ⊂ G such that G/H ∼= ⊕Z/pZ (G/H is elementary abelian),
then H ⊂ Φ(G).

2. For a p-group G, Φ(G) = Gp[G,G].

3. Φ(G) is equal to the set of nongenerators, hence any set of generators for G/Φ(G) is
lifts to a set of generators of G.

But of course, we can do this without reference to Frattini subgroups, so we return to ignoring
the existence of Frattini subgroups, and proceed to our main result.

Proposition 3.13.9. Let G be a �nite p-group, and suppose dimFp H
1(G,Fp) = n where Fp

is a trivial G-module. Then G has a set of generators x1, . . . , xn.

Proof. We switch to using Z/pZ instead of Fp. Since Z/pZ is a trivial G-module,

H1(G,Z/pZ) ∼= HomZ(G,Z/pZ)

Since Z/pZ is abelian, any homomorphism G→ Z/pZ factors through Gab, thus

HomZ(G,Z/pZ) ∼= HomZ(Gab,Z/pZ)

Any Z-homomorphism X → Z/pZ factors through X/pX, and may then be viewed as a
Z/pZ-homomorphism, so

HomZ(Gab,Z/pZ) ∼= HomZ/pZ

(
Gab

�(Gab)p,Z/pZ
)

=

(
Gab

�(Gab)p

)∗
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where ∗ denotes the dual. Since Z/pZ is a vector space, any module is isomorphic to its
dual. Combining all our isomorphisms,

H1(G,Z/pZ) ∼= Gab

�(Gab)p

Finally, consider the short exact sequence of groups

1 Gp[G,G]�[G,G]
G�[G,G]

G�[G,G]
Gp[G,G]�[G,G]

1

(
Gab
)p

Gab G�Gp[G,G]

= = ∼=

The isomorphism for the �nal term is from the 3rd isomorphism theorem. By the 1st
isomorphism theorem applied to this sequence,

Gab

�(Gab
)p ∼= G�Gp[G,G]

Let L = Gp[G,G] as in Proposition 3.13.7. Putting this all together,

H1(G,Z/pZ) ∼= L

Finally, we use our main hypothesis, that H1(G,Z/pZ) is n-dimensional over Z/pZ, which
is to say,

H1(G,Z/pZ) ∼= (Z/pZ)n ∼= L

So L has a set of generators x1N, . . . , xnN . Then by Proposition 3.13.7, the elements
x1, . . . , xn generate G.
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Chapter 4

Brauer groups

Now we turn to something that is at �rst look, unrelated to group cohomology, which is the
Brauer group of a �eld. There will be no group rings, projective resolutions, or long exact
sequences. Instead, we will talk about �elds, matrix algebras, and endomorphism rings.
However, one of the great insights is that these two sets of language are connected in a key
way - the Brauer group, as de�ned in terms of algebras over a �eld K, is also isomorphic to
the second pro�nite cohomology group H2(Gal(Ksep/K), Ksep×).

Philosophically speaking, what is the Brauer group? It is an abelian group denoted
Br(K) associated to a �eld K, so it is an algebraic invariant of K. What does it measure?
In some sense, it measures how �algebraically complicated� K is. For example, the Brauer
group of an algebraically closed �eld (such as C) is the trivial group, and the Brauer group
of the real numbers R will be Z/2Z.

So Br(K) somehow detects that R is not algebraically closed, but R is �close� to being
algebraically closed, in the sense that it only takes a degree 2 �eld extension of R to get
an algebraically closed �eld (C). The Brauer group of a �eld which is �further� from being
algebraically closed is usually �bigger,� whatever that means. Obviously, this is an imprecise
statement, just intended to provide intuition and motivation.

Just de�ning the Brauer group in terms of central simple algebras takes a fair bit of
set up, so that is the concern of the �rst several sections of this chapter. We need some
key results about central simple algebras, like Wedderburn's theorem, the Skolem-Noether
theorem, and the double centralizer theorem, before we can even de�ne Br(K).

Even after that, it is not that easy to compute Brauer groups. We can compute it for R
and �nite �elds, but not too much more. To compute any more, we need to establish the
isomorphism with H2(Gal(Ksep/K), Ksep×) to make more calculations. Once we have that,
we can compute the Brauer group of a local �eld, which leads into local class �eld theory
(though we don't go into local class �eld theory here).

4.1 Wedderburn's theorem

Throughout, let K be a �eld. We will rarely put any additional assumptions on K, such as
the characteristic, or algebraically closed. An algebra A over K, also called a K-algebra, is
a K-vector space which also has a multiplication operation which makes A into a ring. We
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will always assume that K-algebras have a unit, and are associative. However, we will NOT
assume they are commutative, in fact, it is reasonable to say that �most� of them will not
be commutative.

If A is a K-algebra as we have described, we use 1 to denote the unit element of A. Then
there is an embeddings K ↪→ A, x 7→ 1x, and we midly abuse language by referring to K
as a subset of A by identifying K with its image under this embedding. In particular, since
multiplying elements of A by elements of K is commutative, K is contained in the center
of A. However, the center of A may be strictly bigger than K. This leads to our �rst main
de�nition.

De�nition 4.1.1. A K-algebra A is central if the center of A is exactly K.

Since A is a ring, we can talk about ideals. Since we rarely assume A is commutative, it can
have left ideals, right ideals, and two sided ideals, all of which are often distinct concepts.

De�nition 4.1.2. A K-algebra A is simple if it has no proper two sided ideals (except the
trivial ideal).

The goal of this section is to prove a very strong structure theorem for central simple algebras,
called Wedderburn's theorem. Basically, it says that all central simple algebras arise in a
very similar way as matrix algebras. Before that, some examples.

Example 4.1.3. Let D be a division algebra over K. Then D is clearly a simple K-algebra,
since any nonzero element is a unit and generates all of D as an ideal. The center of D is
a �eld, though not necessarily equal to K. We can at least say that D is a central simple
algebra over Z(D).

Example 4.1.4. The complex numbers C are a simple R-algebra, but not central because C
is commutative. However, the Hamilton quaternions H is a central simple R-algebra. They
have a presentation

H = 〈1, i, j, ij | i2 = j2 = −1, ij = −ji〉
It is a division algebra, so by the previous example, it is simple. To show that H is a division
algebra, de�ne the conjugate of a quaternion q = a+ bi+ cj+dij to be q = a− bi− cj−dij,
and de�ne the norm map

N : H→ R q 7→ qq

Then show that q ∈ H is a unit if and only if N(q) 6= 0, and show that N only vanishes for
q = 0. To see that H is also central, it mostly su�ces to observe that i, j, ij are not central
since i, j anti-commute.

Example 4.1.5. Let A be any K-algebra. We will show that Mn(A) is central. For 1 ≤
i, j ≤ n, let eij ∈ Mn(A) denote the matrix with a 1 in the ijth entry and zeros elsewhere.
Note that for X = (xij) ∈Mn(A),

eiiX =


0 · · · 0
...

...
xi1 · · · xin
...

...
0 · · · 0

 Xeii =

0 · · · x1i · · · 0
...

...
...

0 · · · xni · · · 0


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with the nonzero entries appearing in the ith row and ith column, respectively. Suppose
X ∈ Mn(D) is central, so eiiX = Xeii for 1 ≤ i ≤ n. This forces all of the o�-diagonal
elements of X in the ith row and ith column to be zero. Hence X is diagonal. Then since
X commutes with permutation matrices, all the diagonal elements have to be the same. For
example, 0 1

1 0
Id

X =

 0 x22

x11 0
∗

 = X

0 1
1 0

Id

 =

 0 x11

x22 0
∗


Thus X = λ Id for some λ ∈ K, which shows that Mn(A) is central.

Example 4.1.6. Let D be a division algebra over K. By the previous example, Mn(D) is
central. We also claim that is is simple. It su�ces to show that for X = (xij) ∈ Mn(D)
nonzero, the two sided ideal 〈X〉 generated by X contains eij for all i, j, since the eij give a
D-basis of Mn(D). Because of the relation

ekieijej` = ek`

if one eij lies in 〈X〉, then all of them do, so su�ces to show that eij ∈ 〈X〉 for some i, j.
Choose i, j so that xij 6= 0. Then

x−1
ij eiiXejj = eij

so eij ∈ 〈X〉.

As we already alluded, Wedderburn's theorem is a powerful structure theorem for central
simple algebras, which is a sort of �converse� to the previous example. The previous example
said that Mn(D) is central simple, and Wedderburn says that this is actually not special -
all central simple algebras are some matrix algebra over a division algebra. We state it now,
but delay the proof a bit more.

Theorem 4.1.7 (Wedderburn). Let A be a �nite dimensional simple algebra over a �eld K.
Then A ∼= Mn(D) for a unique n ≥ 1 and a unique up to isomorphism division K-algebra
D. Conversely, any algebra of the form Mn(D) where D is a division algebra, is simple.

Before the proof, we need a few technical lemmas, which we omit proofs for.

De�nition 4.1.8. Let A be a K-algebra. For A considered as a left A-module, we write

AA.

Lemma 4.1.9. Let A be a (�nite dimensional, unital, associative) simple K-algebra, and
let M ⊂ A be a minimal left ideal. Then

1. There exists n > 0 so that AA ∼=
⊕n

i=1 M as A-modules.

2. Any A-module is iosmorphic to a direct sum of copies of M . In particular, M is the
only simple A-module.

Proof. Proposition 1 of Rapinchuk [12].
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Lemma 4.1.10. Let A be a K-algebra and let M be a left A-module. Then there is an
isomorphism of K-algebras

EndA(Mn) ∼= Mn(EndA(M))

Proof. Stated and proved in somewhat more generality in Lemma 1 of Rapinchuk [12].

Lemma 4.1.11. Let A = Mn(D) where D is a division ring, and let V = Dn be the space
of n-columns on which A acts by left multiplication. Then V is a simple A-module and
EndA(V ) ∼= Dop.

Proof. Lemma 2 of Rapinchuk [12].

Now we �nally prove Wedderburn's theorem.

Theorem 4.1.12 (Wedderburn). Let A be a �nite dimensional simple algebra over a �eld
K. Then A ∼= Mn(D) for a unique n ≥ 1 and a unique up to isomorphism division K-algebra
D. Conversely, any algebra of the form Mn(D) where D is a division algebra, is simple.

Proof. First, we claim that

EndA(AA)→ Aop φ 7→ φ(1)

is an isomorphism of K-algebras. If φ ∈ EndA(AA), then for a ∈ A,

φ(a) = aφ(1)

so φ is determined by φ(1), so the claimed map is certainly bijective. It is K-linear because
K ↪→ A and φ is A-linear. Finally, we show it is a homomorphism. We use · to denote
multiplication in Aop. Then

φ ◦ ψ 7→ φ(ψ(1)) = ψ(1)φ(1) = φ(1) · ψ(1)

so this establishes EndA(AA) ∼= Aop as K-algebras. By Proposition 4.1.9 part (1), AA ∼= Mn

as an A-module, so EndA(AA) ∼= EndA(Mn). By Lemma 4.1.10, we have EndA(Mn) ∼=
Mn(EndA(M)). Putting these isomorphisms together,

Aop ∼= EndA(AA) ∼= EndA(Mn) ∼= Mn(EndA(M))

For any ring R, we have an isomorphism

Mn(R)→Mn(Rop) m 7→ mT

which in the case R = EndA(M), gives

Mn(EndA(M))op ∼= Mn(EndA(M)op)

so
A ∼= (Aop)op ∼= Mn(EndA(M))op ∼= Mn(EndA(M)op)
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By Schur's lemma, EndA(M) is a division ring, so it's opposite is also a division algebra.
Thus A ∼= Mn(D) for some division algebra D.

Now for uniqueness. Suppose A ∼= Mn1(D1) ∼= Mn2(D2). Let V1 = Dn1
1 , V2 = Dn2

2 . By
Lemma 4.1.11, V1, V2 are simple A-modules. Then by Proposition 4.1.9 part (2), V1

∼= V2 as
A-modules. Using Lemma 4.1.11 again,

Dop
1
∼= EndA(V1) ∼= EndA(V2) ∼= Dop

2

hence D1
∼= D2 as K-algebras, proving uniqueness of D. Also,

dimK A = n2
1 dimK D1 = n2

2 dimK D2

implies n1 = n2 since D1
∼= D2.

Wedderburn's theorem is very powerful and imposes a lot of structure on an arbitrary cen-
tral simple algebra. Already, we have the following corollary which restricts the possible
dimensions of central simple algebras to squares.

Corollary 4.1.13 (Dimension of central simple algebra is a square). Let A be a �nite
dimensional central simple K-algebra. Then dimK A is a perfect square.

Proof. Let K be an algebraic closure of K, and let B = A ⊗K K. By Proposition 4.3.3, B
is simple, so by Wedderburn's theorem, B ∼= Mn(D). By Proposition 4.6.1, D = K. Then

dimK A = (dimK A)(dimK K) = dimK B = n2

4.2 Skolem-Noether theorem and double centralizer the-

orem

Similar to Wedderburn's theorem, though not quite as powerful, are the following theorems
which we will use ubiquitously in what follows. We leave out the proofs, since they are rather
boring.

Theorem 4.2.1 (Skolem-Noether). Let A,B be �nite dimensional simple K-algebras with
B central. If f, g : A→ B are two K-algebra homomorphisms, then there exists b ∈ B× such
that

g(a) = bf(a)b−1 ∀a ∈ A
De�nition 4.2.2. Let A be a K-algebra, and let B ⊂ A be any subset. The centralizer
of B in A is

ZA(B) = {x ∈ A | xb = bx, ∀b ∈ B}
Theorem 4.2.3 (Double centralizer). Let A be a central simple simple K-algebra, and let
B ⊂ A be a simple subalgebra. Then

1. ZA(B)⊗K MdimK B(K) ∼= A⊗Bop

2. ZA(B) is a simple subalgebra of A of dimension dimK A
dimK B

.

3. ZA(ZA(B)) = B. (This is the result usually known as the double centralizer theorem.)
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4.3 De�ning the Brauer group

We now have most of the background tools we need to de�ne the Brauer group, although
the o�cial de�nition has to wait until De�nition 4.3.9. Given a �eld K, the Brauer group
Br(K) is going to be equivalence classes of central simple algebras. Roughly speaking, the
equivalence relation declares matrix algebras Mn(K) to be �trivial.�

The operation in Br(K) is essentially tensor product - given two central simpleK-algebras
A,B, the product of them in the Brauer group is the equivalence class of A⊗K B. Making
this precise is most of the work before the o�cial de�nition - we need to prove that the tensor
product algebra A ⊗K B is central simple, which takes some doing. We also need to verify
that this operation repects the equivalence relation, and we need to locate inverse elements.
Once we do that, we'll have a a de�nition for the Brauer group.

4.3.1 Lemmas needed to de�ne the Brauer group

The �rst question we address is how centers of algebras and central algebras interact with
taking tensor products of algebras, which is de�nitively resolved in Proposition 4.3.2.

Lemma 4.3.1. Let V,W be K-vector spaces. Let w1, . . . , wn ∈ W be linearly independent.
If there exist v1, . . . , vn ∈ V such that

n∑
i=1

vi ⊗ wi = v1 ⊗ wn + · · ·+ vn ⊗ wn = 0 ∈ V ⊗K W

then v1 = · · · = vn = 0.

Proof. Extend w1, . . . , wn to a basis w1, . . . , wn, . . . , wdimW of W . Let x1, . . . , xdimV be a
basis of V , and write vi as

vi =
∑
j

αijxj αij ∈ K

Then

0 =
∑
i

vi ⊗ wi =
∑
i

(∑
j

αijxj

)
⊗ wi =

∑
i,j

αij(xj ⊗ wi)

Since the simple tensors xj ⊗wi form a basis of V ⊗KW , by linear independence αij = 0 for
all i, j. That is, vi = 0 for all i.

Proposition 4.3.2 (Tensor product of central algebras is central). Let A,B be algebras over
K. Then

Z(A⊗K B) = Z(A)⊗K Z(B)

In particular, the tensor product of central algebras is central.

Proof. The inclusion ⊃ is easy, so we dispatch it �rst. If a⊗ b ∈ Z(A)⊗Z(B), then for any
x⊗ y ∈ A⊗B,

(x⊗ y)(a⊗ b) = xa⊗ yb = ax⊗ by = (a⊗ b)(x⊗ y)
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thus a⊗ b ∈ Z(A⊗ B). The reverse inclusion is not so immediate. Let z ∈ Z(A⊗ B), and
write it as

z =
n∑
i=1

ai ⊗ bi ai ∈ A, bi ∈ B

and choose this so that n is minimal. We claim that the set {a1, . . . , an} is linearly in-
dependent over K, as is the set {b1, . . . , bn}. Suppose not, so that b1, . . . , bn are linearly
independent, so we can write b1 as a K-linear combination

b1 = β2b2 + · · ·+ βnbn βi ∈ K

Then we can write z as

z =

(
a1 ⊗

n∑
i=2

βibi

)
+

n∑
i=2

ai ⊗ bi =
n∑
i=2

(βia1 + ai)⊗ bi

contradicting the minimality of n from earlier. The same argument with roles reversed
shows the linear independence of the ai. Now we claim that ai ∈ Z(A) and bi ∈ Z(B) for
i = 1, . . . , n. For any a ∈ A, since z ∈ Z(A⊗B), we have

0 = (a⊗ 1)z − z(a⊗ 1) =
n∑
i=1

(aai − aia)⊗ bi

Then by linear indepence of the bi and Lemma 4.3.1, the we have aai−aia = 0 for all i, that
is, aai = aia which says that ai ∈ Z(A) for all i. By the same argument with roles reversed,
bi ∈ Z(B) for all i. Hence z ∈ Z(A)⊗ Z(B).

Having resolved the interaction of central-ness and tensor products, we need to know a
similar relationship for simple-ness. The relationship is not quite as clean, but good enough.
The proof is very technical so we leave it out.

Proposition 4.3.3 (Tensor product of simple algebras is simple, if one is central). Let
A,B be simple K-algebras, at least one of which is also central. Then A ⊗K B is a simple
K-algebra.

Proof. See Theorem 2 of Rapinchuk [12].

We mentioned earlier that the equivalence relation in the Brauer group is going to force
matrix algebras Mn(K) to be trivial in Br(K). The next lemma explains why this has to be
the case - tensoring with a matrix algebra over K does not really change the algebra in a
�signi�cant� way. That is, it does not change the associated division algebra (coming from
Wedderburn's theorem), it just increases the dimension. A good way to think of (1) in the
next lemma is that it says that Mn(K) represents the identity element of Br(K).

Lemma 4.3.4 (Identity for Brauer group). Let K be a �eld. Then

1. For any K-algebra R and positive integer n, R⊗K Mn(K) ∼= Mn(R).

2. For any positive integers m,n, Mm(K)⊗K Mn(K) ∼= Mmn(K).
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Proof. (1) An isomorphism is given by

R⊗K Mn(K)→Mn(R) r ⊗ x 7→ rx

with inverse given by

Mn(R) 7→ R⊗K Mn(K) (rij) 7→
∑
i,j

rij ⊗ eij

where eij is the matrix with 1 in the ijth entry and zeroes elsewhere.
(2) Up to choice of basis, Mm(K) ∼= EndK(Km), so we work with the endomorphism

rings instead. There is a homomorphism

EndK(Km)⊗K EndK(Kn)→ EndK(Km ⊗Kn) = EndK(Kmn)

φ⊗ ψ 7→
(
x⊗ y 7→ φ(x)⊗ ψ(y)

)
Note that by Proposition 4.3.3, the domain is a simple algebra. Then since the map is
nonzero, it is injective (since the domain is simple). Then since the dimensions are equal, it
is an isomorphism.

Before we even de�ne the Brauer group, we're going to address the question of inverses. Of
course, we haven't described the equivalence relation yet, but we do know that the identity
element should be represented by a matrix algebra Mn(K).

So given an algebra A, how to �nd an algebra which we can tensor with A to obtain a
matrix algebra? Is there some algebra associated to A which is a clear candidate? Perhaps
the reader sees this as coming out of thin air, but the opposite algebra Aop is one algebra we
might consider, and it turns out to be the right choice.

Aop is the same as A as a set, but the multiplication operation is reversed. This reversal
doesn't a�ect what the center is, or a�ect two-sided ideals, so Aop is central simple (as long
as A was).

Proposition 4.3.5 (Inverses for Brauer group). Let A be a central simple K-algebra of
dimension d. Then

A⊗K Aop ∼= EndK(A) ∼= Md(K)

Note that these are isomorphisms of K-algebras.

Proof. For a ∈ A, de�ne

La : A→ A x 7→ ax

Ra : A→ A x 7→ xa

Note that La, Ra ∈ EndK(A). Then de�ne

L : A → EndK(A) a 7→ La

R : Aop → EndK(A) a 7→ Ra
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We claim that L,R are K-algebra homomorphisms. First we verify K-linearity. Let a ∈
A, λ ∈ K.

Lλa = (x 7→ λax) = λ(x 7→ ax) = λLa

Rλa = (x 7→ xλa) = λ(x 7→ xa) = λRa

Now we verify that they preserve multiplication. Let a, b ∈ A. We denote multiplication in
Aop by a · b = ba. (Adjacent letters with no symbol denotes usual multiplication in A.)

Lab = (x 7→ abx) = (x 7→ ax) ◦ (x 7→ bx) = LaLb

Ra·b = (x 7→ x(a · b)) = (x 7→ xba) = (x 7→ xa) ◦ (x 7→ xb) = RaRb

Now we note that for a, b ∈ A, La, Rb commutes in EndK(A).

LaRb(x) = La(bx) = abx = Rb(ax) = RbLa(x)

Thus we have a K-algebra homomorphism

F : A⊗K Aop → EndK(A) a⊗ b 7→ LaRb = RbLa = (x 7→ axb)

Since A is simple, so is Aop, so by Proposition 4.3.3, A ⊗K Aop is simple (this is where we
use the fact that A is central). Hence since F is not the zero morphism, it is injective. But
then by dimension counting, it is also surjective, so

A⊗K Aop ∼= EndK(A)

As a K-vector space, A is just Kd, so the �nal isomorphism EndK(A) ∼= Md(K) is the usual
basis-dependent isomorphism between K-linear maps Kd → Kd and d × d matrices with
entries in K.

4.3.2 De�nition of Brauer equivalence

Now that we've done the hard part of addressing aspects of Brauer group multiplication, we
can address the easier part, which is just what the right equivalence relation Br(K) should
have. The �rst somewhat reasonable choice is to use the division algebra invariant associated
to a central simple algebra A by Wedderburn's theorem - the uniqueness aspect makes it a
good invariant, so we could declare central simple algebras to be equivalent if they have the
same associated division algebra. This is exactly what our equivalence relation is, though
we also give another equivalent condition in terms of tensoring with matrix algebras Mn(K)
which is frequently given as the de�nition in other sources.

Lemma 4.3.6 (Equivalent conditions for Brauer group equivalence). Let A1, A2 be central
simple algebras over a �eld K, with A1

∼= Mn1(D1), A2
∼= Mn2(D2) for unique integers n1, n2

and unique up to isomorphism division algebras D1, D2 (by Wedderburn's theorem 4.1.7).
The following are equivalent.

1. D1
∼= D2
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2. There exist integers m1,m2 such that A1 ⊗K Mm1(K) ∼= A2 ⊗K Mm2(K).

Proof. First we prove (1) =⇒ (2). Suppose D1
∼= D2. Then using Lemma 4.3.4 a few

times,

A1 ⊗k Mn2(K) ∼= Mn1(D1)⊗K Mn2(K) ∼=
(
D1 ⊗K Mn1(K)

)
⊗K Mn2(K)

∼= D1 ⊗K
(
Mn1(K)⊗K Mn2(K)

)
∼= D1 ⊗K Mn1n2(K)

∼= Mn1n2(D1) ∼= Mn1n2(D2) ∼= D2 ⊗K Mn1n2(K)
∼= D2 ⊗K ⊗KMn2(K)⊗K Mn1(K) ∼= A2 ⊗K Mn1(K)

which proves (2). For the converse, suppose A1 ⊗K Mm1(K) ∼= A2 ⊗K Mm2(K). Then using
a similar chain of isomorphisms to the above,

Mm1n1(D1) ∼= A1 ⊗K Mm1(K) ∼= A2 ⊗K Mm2(K) ∼= Mm2n2(D2)

By the uniqueness of Wedderburn's theorem 4.1.7, this implies D1
∼= D2.

De�nition 4.3.7. Two central simple algebras are similar if either the previous two condi-
tions hold. That is, A1 ∼ A2 if the associated division algebras are isomorphic, or if A1, A2

become isomorphic after tensoring with some matrix rings over K.

Lemma 4.3.8. Similarity as de�ned above is an equivalence relation.

Proof. Thinking in terms of condition (1), this is immediate from the uniqueness aspect of
Wedderburn's theorem and the fact that isomorphism is an equivalence relation.

Finally all our work has paid o�, and we can de�ne Br(K) properly.

De�nition 4.3.9. The Brauer group of a �eld K is the set of equivalence classes of central
simple algebras under the previous equivalence. The product operation is given by

[A][B] = [A⊗K B]

We show this is well de�ned in the next proposition.

Proposition 4.3.10. The Brauer group product operation is well de�ned, associative, and
commutative. It has unit [Mn(K)], and an inverse for [A] is given by [Aop].

Proof. By Proposition 4.3.3, A⊗K B is simple, and by Proposition 4.3.2, A⊗K B is central,
so taking the equivalence class of A⊗K B at least makes sense.

We need to verify that this product is independent of the choice of representative algebras
A,B. Suppose A′, B′ are other representatives with [A] = [A′], [B] = [B′]. Then there are
integers m,m′, n, n′ so that

A⊗K Mm(K) ∼= A′ ⊗K Mm′(K) B ⊗K Mn(K) ∼= B′ ⊗K Mn′(K)

Then
(A⊗K B)⊗K Mmn(K) ∼= (A′ ⊗K B′)⊗K Mm′n′(K)

hence [A⊗KB] = [A′⊗KB′], so the product is well de�ned. Associativity and commutativity
follow immediately from associativity and commutativity of ⊗K . [Mn(K)] is an identity
element by Lemma 4.3.4. [Aop] is an inverse for [A] by Proposition 4.3.5.
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Remark 4.3.11. An equivalence class of central simpleK-algebras corresponds, via Wedder-
burn's theorem 4.1.7 to an isomorphism class of division algebras over K. Thus the points
of the Brauer group Br(K) are in one-to-one correspondence with isomorphism classes of
division algebras over K.

4.4 Relative Brauer group

We now have an associated abelian group Br(K) to any �eld K, so we have �half a functor.�
The half missing is that if we have a morphism of �eldsK → L, there should be an associated
morphism Br(K) → Br(L). Of course, the category of �elds doesn't have complicated
morphisms, because everything is just an embedding, so really the question is, how are
Br(K) and Br(L) related if L/K is a �eld extension? This is measured by the relative
Brauer group Br(L/K).

Lemma 4.4.1. Let L/K be a �nite extension and let A,B be K-algebras. Then there is an
isomorphism of L-algebras

(A⊗K B)⊗K L ∼= (A⊗K L)⊗L (B ⊗K L)

Thus
Br(K)→ Br(L) [A] 7→ [A⊗K L]

is a group homomorphism.

Proof. The isomorphism is straightforward to write down in terms of elements. The homo-
morphism property follows immediately.

De�nition 4.4.2. Let L/K be a �nite �eld extension. The relative Brauer group
Br(L/K) is de�ned to be the kernel of the homomorphism

Br(K)→ Br(L) [A] 7→ [A⊗K L]

If we want to emphasize that we're talking about a Brauer group which is not relative, we
sometimes refer to Br(K) as the absolute Brauer group.

Since it is not always so easy to tell when an algebra A becomes trivial (becomes isomor-
phic to a matrix algebra) after tensoring with L, we would like to to characterize Br(L/K)
as a subset of Br(K) in a way that is easier to check for individual algebras. The following
result gives a very convenient characterization.

Loosely speaking, Br(L/K) is subset of Br(K) of algebras which �contain� (an isomorphic
copy) of L. This isn't really true, though, because it doesn't make sense for an element of
Br(K) to contain an isomorphic copy of L, since an element of Br(K) is not an algebra, but
rather an equivalence class of algebras. So what is more accurate to say is that Br(L/K) is
the subset of Br(K) for which there exists an algebra in each equivalence class containing a
copy of L. The next theorem makes this precise.

Theorem 4.4.3. Let L/K be a a �nite extension and let n = [L : K].
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1. If A is a central simple K-algebra with dimK A = n2 and L ⊂ A, then A⊗KL ∼= Mn(L).

2. If A ⊗K L ∼= Mn(L), then there exists a unique (up to isomorphism) central simple
K-algebra A′ such that A ∼ A′, dimK A

′ = n2, and L ⊂ A′.

Thus
Br(L/K) =

{
[A] ∈ Br(K) : dimK A = n2, L ⊂ A

}
Proof. Theorem 6 of Rapinchuck [12] or Proposition 2.2.9 of Gilles & Szamuely [4].

Based on how we just characterized the relative Brauer group Br(L/K) in terms of sub�elds
of K-algebras, it might be useful later to understand when algebras contain �elds and that
sort of thing. The main result is the following, which guarantees the existence of a maximal
sub�eld whose dimension is the square root of the dimension of the algebra.

Proposition 4.4.4. Let D be a central division algebra over a �eldK of dimension dimK D =
d2. Then D contains a maximal sub�eld L which is a separable extension of K, and
dimK L = d.

D

L

K

d

d

Proof. Corollary 5 and Proposition 3 of Rapinchuk [12]. Note that there is no uniqueness of
L; there may be many maximal sub�elds, though they must all have dimension d.

There is a parallel, as we will see more later, between Brauer groups and Galois groups. For
a �eld K with separable closure Ksep, the absolute Galois group Gal(Ksep/K) is the inverse
limit of Gal(L/K) for all L/K �nite Galois, so the absolute Galois group is determined by
an collection of �nite groups. Similarly, the absolute Brauer group Br(K) is determined by
the collection of the relative Brauer groups Br(L/K) for all L/K �nite Galois, as the next
proposition makes precise.

Proposition 4.4.5. Let K be a �eld, and let L be the set of all �nite Galois extensions of
K. Then

Br(K) =
⋃
L∈L

Br(L/K)

Proof. Proposition 5 of Rapinchuk [12].

The analogy is even better, since the absolute Brauer group Br(K), which we said corre-
sponds in some way to the absolute Galois group Gal(Ksep/K), is equal to the relative Brauer
group Br(Ksep/K), as the next corollary tells us.

Corollary 4.4.6. Let K be a �eld with separable closure Ksep. Then Br(K) = Br(Ksep/K).
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Proof. The inclusion ⊃ is obvious from the de�nitions. For the reverse inclusion, we basically
repeat the proof of Proposition 5 from Rapinchuk [12].

Let [A] ∈ Br(K) with representative central simple algebra A. By Wedderburn's theorem,
A ∼= Md(D) for a division algebra D. Let `2 = dimK D. By Proposition 4.4.4, D contains a
sub�eld P so that P/K is separable, so P ⊂ Ksep. By Theorem 4.4.3 part 1,

D ⊗K P ∼= M`(P )

Then

A⊗K P ∼= Md(D)⊗K P
∼= (Md(K)⊗K D)⊗K P Lemma 4.3.4
∼= (Md(K)⊗K P )⊗P (D ⊗K P ) Lemma 4.4.1
∼= Md(P )⊗P M`(P ) Lemma 4.3.4
∼= Md`(P ) Lemma 4.3.4

Then since P ⊂ Ksep,

A⊗K Ksep ∼= (A⊗K P )⊗P Ksep ∼= Md`(P )⊗P Ksep ∼= Md`(K
sep)

which is to say, [A] ∈ Br(Ksep/K).

4.5 Brauer group as Galois cohomology group

Before getting to details, we describe the end goal of this section, which is to identify Br(K)
with a certain pro�nite cohomology group. In particular,

Br(K) ∼= H2(Gal(Ksep/K), (Ksep)×)

More generally, we have an isomorphism involving relative Brauer groups.

Br(L/K) ∼= H2(Gal(L/K), L×)

This isomorphism arises from an isomorphism of inversely directed systems, of which Br(L/K)
and H2(Gal(L/K), L×) are the respective direct limits. That is, �rst we will �nd an isomor-
phism for L/K �nite, then using direct limits we will obtain the general case.

As usual, we omit many details, since the construction of the isomorphism above in the
�nite case is quite involved, and the proof that the map constructed is an isomorphism is
also involved.

4.5.1 2-cocycle (factor set) associated to a central simple algebra

In this section, we associate an element of H2(Gal(L/K), L×) to an element [A] ∈ Br(L/K).
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De�nition 4.5.1. Let L/K be a �nite Galois extension, and recall that

Br(L/K) =
{

[A] ∈ Br(K) : dimK A = n2, L ⊂ A
}

Let [A] ∈ Br(L/K) with representative A so that dimK A and L ⊂ A. Let σ ∈ Gal(L/K).
Since A is central simple over K and L is simple over K, we can apply the Skolem-Noether
theorem 4.2.1 to the two homomorphisms

L ↪→ A a 7→ a

L ↪→ A a 7→ σ(a)

By Skolem-Noether, these are conjugate, which is to say, there exists xσ ∈ A× so that

xσax
−1
σ = σ(a) ∀a ∈ L

Then for σ, τ ∈ Gal(L/K), de�ne
aσ,τ = xσxτx

−1
στ

The collection {aσ,τ} is the factor set of A relative to L.

Here are some facts which we state without proof to explain various aspects of the previous
de�nition. Let G = Gal(L/K).

1. (Lemma 6 [12]) The elements xσ (for σ ∈ G) give a basis of A over L, that is,

A =
⊕
σ∈G

Lxσ

2. The elements aσ,τ lie in L
×, so they may be viewed as functions

G×G→ L× (σ, τ) 7→ aσ,τ

3. The products xσxτ for σ, τ ∈ G determine all the multiplication in A, and

xσxτ = aσ,τxστ

hence the collection {aσ,τ} captures all information about multiplication in A.

4. The functions aσ,τ are in fact 2-cocycles (elements of Z2(G,L×)), since they satisfy the
relations

ρ(aσ,τ )aρ,στ = aρ,σaρσ,τ

for ρ, σ, τ ∈ G.

5. If we replace the central simple algebra A with another Brauer-equivalent central simple
algebra A′ (that is, [A] = [A′]), and repeat the construction to obtain a factor set

{
a′σ,τ
}

for A′, then there are elements bσ ∈ L× such that

a′σ,τ =

(
bσσ(bτ )

bστ

)
aσ,τ
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Since
(
bσσ(bτ )
bστ

)
is a 2-coboundary, this says that

[a′σ,τ ] = [aσ,τ ] in H2(G,L×)

Thus we have a well-de�ned map

Br(L/K)→ H2(G,L×) [A] 7→ [{aσ,τ}]

For more details behind all of these facts, see pages 13-14 of Rapinchuk [12].

De�nition 4.5.2. We give a name to the map de�ned/constructed above.

βL/K : Br(L/K)→ H2(Gal(L/K), L×) [A] 7→ [{aσ,τ}]

Eventually, we want to show that βL/K is an isomorphism.

Lemma 4.5.3. βL/K is injective.

Proof. Lemma 7 of Rapinchuk [12].

4.5.2 Algebra (crossed product) associated to a 2-cocycle (factor
set)

To show that βL/K is surjective, we construct an algebra from a cocycle/factor set {aσ,τ}.
That is, we're going to construct an inverse map

H2(Gal(L/K), L×)→ Br(L/K)

De�nition 4.5.4. Let {aσ,τ} be a factor set, thought of as an element of Z2(G,L×). De�ne
the L-vector space

A =
⊕
σ∈G

Lxσ

Then de�ne multiplication in A by

(aσxσ)(bτxτ ) = aσσ(bτ )aσ,τxστ

and extend this by L-linearity. That is,(∑
σ

aσxσ

)(∑
τ

bτxτ

)
=
∑
σ,τ

aσσ(bτ )aσ,τxστ

We then view A as a K-algebra. The algebra A is called the crossed product of L and
G relative to the factor set {aσ,τ}, and is denoted (L,G, {aσ,τ}).

Lemma 4.5.5 (Surjectivity of βL/K). Let L/K be a �nite Galois extension and G =
Gal(L/K), n = [L : K] = |G|. Let {aσ,τ} be a factor set. The K-algebra A = (L,G, {aσ,τ})
is an associative, unital 1, central simple K-algebra containing (an isomorphic copy of) L,
and with dimK A = n2, and

βL/K [A] = [{aσ,τ}]
Hence βL/K is surjective.

1In particular, a−11,1x1 is the identity
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Proof. Lemma 8 of Rapinchuk [12]. Note that because (L,G, {aσ,τ}) contains a copy of L and
has dimension n2, we know from Theorem 4.4.3 that it represents a class in Br(L/K).

Theorem 4.5.6 (Brauer group isomorphism in �nite case). Let L/K be a �nite Galois
extension. The map

βL/K : Br(L/K)→ H2(Gal(L/K), L×) [A] 7→ [{aσ,τ}]

is a group isomorphism.

Proof. By Lemmas 4.5.3, 4.5.5 it su�ces to show that βL/K is a group homomorphism.
Details in Theorem 7 of Rapinchuk [12].

This concludes our construction and discussion of the isomorphism

Br(L/K) ∼= H2(Gal(L/K), L×)

in the case where L/K is �nite. All we need to do now is extend this result to the in�nite
case. This is not so hard, compared to the work needed in the �nite case.

4.5.3 Extension to in�nite extensions, main isomorphism

Remark 4.5.7. Let L/K be an in�nite Galois extension and let E be the set of intermediate
�nite Galois extensions K ⊂ E ⊂ L. If E1, E2 ∈ E with E1 ⊂ E2, then there is a restriction
map

Gal(E2/K)→ Gal(E1/K) σ 7→ σ|E1

2 which induces the in�ation map on cohomology

θ1
2 : H2(Gal(E1/K), E×1 )→ H2(Gal(E2/K), E×2 ) [{aσ,τ}] 7→ [{aσ|E1

,τ |E1
}]

which makes the groups H2(Gal(E/K), E×) into a directed system. Furthermore, from the
theory of pro�nite cohomology (Proposition 3.12.6), the direct limit is

H2(Gal(L/K), L×) = lim−→
E∈E

H2(Gal(E/K), E×)

Remark 4.5.8. Let L,K, E be as above, with E1, E2 ∈ E and E1 ⊂ E2. There is an inclusion
map

ι12 : Br(E1/K)→ Br(E2/K) [A] 7→ [A]

so the groups Br(E/K) form a direct system, with direct limit

Br(L/K) =
⋃
E∈E

Br(E/K) = lim−→
E∈E

Br(E/K)

2This makes the groups Gal(E/K) into an inversely directed system and Gal(L/K) ∼= lim←−
E∈E

Gal(E/K),

see Proposition 2.3.1.
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So both Br(L/K) and H2(Gal(L/K), L×) are direct limits of directed systems, which are
both indexed by intermediate �nite Galois extensions E/K. Furthermore, for each pair
Br(E/K) and H2(Gal(E/K), E×), we have an isomorphism

βE/K : Br(E/K)→ H2(Gal(E/K), E×)

Nevertheless, this is not enough to immediately conclude that the direct limits Br(L/K) and
H2(Gal(L/K), L×) are isomorphic. What we need is an isomorphism of directed systems,
which is exactly what the next proposition accomplishes.

Proposition 4.5.9 (Isomorphism of directed systems for Brauer group). Let L/K be an in�-
nite Galois extension and let E be the set of intermediate �nite Galois extension K ⊂ E ⊂ L.
The isomorphism βE/K give an isomorphism of directed systems

(
H2(Gal(E/K), E×), θij

) ∼=(
Br(E/K), ιij

)
. That is, for all E1, E2 ∈ E , E1 ⊂ E2, the following diagram commutes.

Br(E1/K) Br(E2/K)

H2(Gal(E1/K), E×1 ) H2(Gal(E2/K), E×2 )

ι12

βE1/K
βE2/K

θ12

Thus the direct limit of maps βE/K gives an isomorphism on the direct limits.

Br(L/K) H2(Gal(L/K), L×)
βL/K=lim−→βE/K

∼=

In particular, since Br(K) = Br(Ksep/K) (Corollary 4.4.6),

Br(K) ∼= H2(Gal(Ksep/K), (Ksep)×)

Proof. Proposition 6 and Theorem 8 of Rapinchuk [12].

Remark 4.5.10. One immediate corollary of this is that Br(K) is a torsion group. From the
Cor ◦Res composition (Proposition 3.9.17), we know that H2(Gal(E/K), E×) is torsion for
E/K �nite Galois, and the direct limit of torsion groups is torsion, soH2(Gal(Ksep/K), Ksep×)
is torsion, so Br(K) is torsion.

This is not at all obvious from the description in terms of algebras, since it says that for
any central simple algebra A, the tensor product A ⊗ A ⊗ · · · ⊗ A is eventually isomorphic
to a matrix algebra Mn(K) if we tensor enough times.

The isomorphism Br(K) ∼= H2(GK , (K
sep)×) also has some relation to cup products, via the

next result. This result really belongs in a discussion of the Merkurjev-Suslin theorem, so
we include it there later (see Proposition 5.8.16), but it has some interest at this stage as
well.

De�nition 4.5.11. Let L/K be a cyclic Galois extension of orderm, and �x an isomorphism
χ : Gal(L/K)→ Z/mZ. Let b ∈ K×, and let σ = χ−1(1). The cyclic algebra (χ, b) is the
algebra with the following presentation. It is generated as an L-algebra by L and an element
y, satisfying

ym = b σ(λ) = y−1λy, ∀λ ∈ L
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Proposition 4.5.12. Let K be a �eld, let m ∈ Z>0, �x a separable closure Ksep, and let
GK = Gal(Ksep/K). Let L/K be a cyclic Galois extension of degree m contained in Ksep,
and �x an isomorphism

χ : Gal(L/K)
∼=−→ Z/mZ

Then de�ne
χ̃ : GK → Z/mZ σ 7→ χ(σ|L)

so that χ̃ ∈ H1(GK ,Z/mZ). Let δ : H1(GK ,Z/mZ) → H2(GK ,Z) be the coboundary map
of the LES associated to

0→ Z m−→ Z→ Z/mZ→ 0

3 Then consider the cup product map

H2(GK ,Z)×H0(GK , (K
sep)×) H2(GK , (K

sep)×)∪

Under the isomorphism
H2(GK , (K

sep)×) ∼= Br(K)

the element δ(χ̃) ∪ b corresponds to the Brauer class of the cyclic algebra (χ, b).

Proof. Proposition 4.7.3 of Gille & Szamuely [4].

4.5.4 Restriction maps

For a �nite Galois extension L/K, we can give a cohomological interpretation of the map

Br(K)→ Br(L) [A] 7→ [A⊗K L]

In particular it is �the same� as the Res map on cohomology. This statement is made more
precise by the next proposition.

Proposition 4.5.13. Let K ⊂ L ⊂M be a tower of �elds withM/K �nite Galois. Consider
the homomorphism

ε : Br(M/K)→ Br(M/L) [A] 7→ [A⊗K M ]

Note that Gal(M/L) is a subgroup of Gal(M/K), so there is the (pro�nite) cohomology map

Res : H2(Gal(M/K),M×)→ H2(Gal(M/L),M×)

Then the following diagram commutes.

Br(M/K) Br(M/L)

H2(Gal(M/K),M×) H2(Gal(M/L),M×)

βM/K∼=

ε

βM/L∼=

Res

3Note that we are viewing Z and Z/mZ as trivialGK-modules, and by Proposition 3.2.7H1(GK ,Z/mZ) =
HomZ(GK ,Z/mZ), so χ̃ ∈ H1(GK ,Z/mZ).
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In particular, in the caseM = Ksep, we note that Lsep = Ksep,Br(K) = Br(Ksep/K),Br(L) =
Br(Lsep/L), so the above commutative square becomes

Br(K) Br(L)

H2(Gal(Ksep/K), (Ksep)×) H2(Gal(Lsep)/L), (Lsep)×)

∼=

[A] 7→[A⊗KL]

∼=

Res

Proof. Proposition 7 of Rapinchuk [12].

4.6 Brauer group computations

By now, we have many powerful tools available for computing Brauer groups. We have
the Skolem-Noether theorem, Wedderburn's theorem, results about maximal sub�elds and
relative Brauer groups, and most importantly an identi�cation of Br(K) with a pro�nite
cohomology group.

We start with algebraically closed �elds, which are very simple - they have trivial Brauer
group. Then we tackle a general case of a relative Brauer group Br(L/K) in the case where
Gal(L/K) is cyclic, which gives a very computationally useful tool at the end. This allows
us to calculate Br(R) and Br(Fq). Finally, we use this tool to calculate the Brauer group of
a local �eld, such as Qp.

4.6.1 Algebraically closed �elds

Proposition 4.6.1. Let K be an algebraically closed �eld.

1. The only �nite dimensional division algebra over K is K itself.

2. If A is a �nite dimensional simple K-algebra, then A ∼= Mn(K) for some n.

3. Br(K) is trivial.

Proof. (1) Let D be a �nite dimensional division algebra over K, and suppose D 6= K. Then
there exists α ∈ D \K, and then K(α)/K is a �nite algebraic extension, which is impossible
since K is algebraically closed. Hence D = K.

(2) By Wedderburn's theorem, A ∼= Mn(D) for some division algebra over K, but then
D = K by (1).

(3) Mn(K) represents the identity element of Br(K), so (2) says that everything in the
Brauer group is equivalent to the identity.

4.6.2 Cyclic algebras - relative Brauer group of cyclic Galois exten-
sion

Let L/K be a �nite Galois extension with cyclic Galois group, and let NL
K be the norm map.

The goal of this section is to describe an isomorphism

Br(L/K) ∼= K×/NL
K(L×)
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This is useful for computing various absolute Brauer groups. For example, an immediate
application is Br(R), since the separable closure C/R is a �nite cyclic extension. This can
also be utilized to compute the Brauer group of a �nite �eld, or of a local �eld.

Remark 4.6.2. Using group cohomology, it is easy to see that for L/K �nite cyclic Galois

Br(L/K) ∼= H2(Gal(L/K), L×) ∼= K×/NL
K(L×)

We will ignore this for the moment, and attempt to describe this using purely the language
of algebras.

De�nition 4.6.3. Let L/K be a �nite cyclic Galois extension. Let [A] ∈ Br(L/K), and
choose a representative central simple algebra A with dimK A = n2 so that L ⊂ A (this
exists by Theorem 4.4.3). Let σ ∈ Gal(L/K) be a generator. Using the Skolem-Noether
theorem 4.2.1, choose xσ ∈ A× such that

xσax
−1
σ = σ(a) ∀a ∈ L

Set xσi = (xσ)i mod n, and note that xσiax
−1
σi

= σi(a) for all a ∈ L and all i, so as in
De�nition 4.5.1, the xσi for i = 0, . . . , n− 1 give an L-basis of A and we obtain a factor set
aσi,σj associated to A. Now set α = (xσ)n, and note that α ∈ K× 4, and that

xσixσj =

{
xσi+j i+ j < n

αxσi+j−n i+ j ≥ n

Thus multiplication for the algebra A is determined by α, and we denote this algebra by
(L,σ,α) and call it a cyclic algebra.

Remark 4.6.4. Since [A] was arbitrary in the previous de�nition, the discussion shows that
every element of Br(L/K) is of the form [(L, σ, α)] for some α ∈ K×. We can describe the
factor set associated to (L, σ, α) as

aσi,σj = xσixσjx
−1
σi+j

= (xσ)i+j(xσ)−(i+j) mod n =

{
1 i+ j < n

α i+ j ≥ n

We denote this factor set by
{
aσi,σj(α)

}
. So under the isomorphism Br(L/K) ∼= H2(Gal(L/K), L×),

the classes [(L, σ, α)] and [aσi,σj(α)] are mapped to each other.

De�nition 4.6.5. The assignment

Br(L/K)→ K× [(L, σ, α)] 7→ α

is not quite well de�ned, because α depends on the choice of xσ. However, a di�erent choice
x′σ satisfying x′σa(x′σ)−1 for all a ∈ L must be of the form x′σ = xσt for some t ∈ L×, and
then if α′ = (x′σ)n we get

α′ = (x′σ)n = (xσt)
n = xσtxσt · · · xσt = σ(t)xσxσt · · · xσt

= · · · = σ(t)σ2(t) · · ·σn(t)(xσ)n = NL
K(t)α

4(xσ)
na(xσ)

−n = σn(a) = a implies that α ∈ ZA(L) = L (using Corollary 4 of Rapinchuk [12], and then
σ(α) = xσαx

−1
σ = xσx

n
σx
−1
σ = (xσ)

n = α so α is �xed by Gal(L/K), hence α ∈ K. It cannot be zero because
xσ is a unit, so α ∈ K×.
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Thus if instead of mapping to K×, we map to K×/NL
K(L×)K×, we have a well-de�ned

assignment, and we have a map

γL/K : Br(L/K)→ K×/NL
K(L×) [(L, σ, α)] 7→ αNL

K(L×)

This map turns out to be an isomorphism.

Theorem 4.6.6. Let L/K be a �nite cyclic Galois extension and let σ be a generator of
Gal(L/K). Then there is an isomorphism of groups

γL/K : Br(L/K)→ K×/NL
K(L×) [(L, σ, α)] 7→ αNL

K(L×)

Proof. First we show it is a homomorphism. Let [(L, σ, α)], [(L, σ, β)] ∈ Br(L/K) with
α, β ∈ K×. Using the isomorphism with H2, let aσi,σj(α), aσi,σj(β) be the associated factor
sets. Then

aσi,σj(α)aσi,σj(β) = aσi,σj(αβ)

hence
[(L, σ, α)] · [(L, σ, β)] = [(L, σ, αβ)]

Thus applying γL/K we get

γL/K

(
[(L, σ, α)] · [(L, σ, β)]

)
= γL/K [(L, σ, αβ)]

= (αβ)NL
K(L×)

=
(
αNL

K(L×)
)
·
(
βNL

K(L×)
)

=
(
γL/K [(L, σ, α)]

)
·
(
γL/K [(L, σ, β)]

)
Hence γL/K is a group homomorphism. For injectivity, if α ≡ α′ mod NL

K(L×) and more
precisely, α′ = αNL

K(t) for t ∈ L×, then the correspondence

(x′σ)i 7→ (xσt)
i i = 0, . . . , n− 1

extends to an isomorphism of algebras (L, σ, α) ∼= (L, σ, α′). Surjectivity of γL/K follows from
the fact that

{
aσi,σj(α)

}
is a cocycle for any α ∈ K×. Thus γL/K is an isomorphism.

We don't need the next lemma at the moment, but we will use it later for computing the
Brauer group of a local �eld, so we record it now. It addresses how cyclic algebras behave
in towers.

Lemma 4.6.7. Let K ⊂ E ⊂ F be a tower of �elds with F/K �nite cyclic Galois, and let let
σ̂ be a generator of Gal(F/K). Let n = [F : K],m = [F : E], and let σ = σ̂|E ∈ Gal(E/K).

F

E

K

n

m

Then
[(E, σ, α)] = [(F, σ̂, αn/m)] ∈ Br(F/K)

Proof. Lemma 10 of Rapinchuk [12].
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4.6.3 Real numbers

First we compute Br(R) using our knowledge of relative Brauer groups of cyclic extensions,
since C/R is the separable closure, and is a cyclic extension. Then, we re-derive the same
result using just some results about algebras, primarily the Skolem-Noether theorem and
existence of maximal sub�elds.

Proposition 4.6.8. Br(R) ∼= Z/2Z.

Proof. The Brauer group is the same as the relative Brauer group of the separable closure,
which in this case is the algebraic closure, C/R. By Theorem 4.6.6,

Br(R) = Br(C/R) ∼= R×/NC
R (C×)

The image of the norm map C× → R× is R>0, so

Br(R) ∼= NC
R (C×) ∼= R×/R>0

∼= {±1}

Remark 4.6.9. In the language of division algebras, the previous computation says that
there is exactly one (up to isomorphism) noncommutative central division algebra over R.
Recall that the Hamilton quaternions may be described as the R-algebra with basis 1, i, j, ij
satisfying i2 = j2 = −1 and ij = −ji.

H = 〈1, i, j : i2 = j2 = −1, ij = −ji〉

Since the Hamilton quaternions H are a central division R-algebra (proof omitted), they are
the unique �nite dimensional central division algebra over R.

As an exercise, we can also show directly (not using the previous result) that the Hamilton
quaternions are the only nontrivial �nite dimensional central division algebra over R.

Proposition 4.6.10. The only nontrivial �nite dimensional central division algebra over R
is the Hamilton quaternions.

Proof. Let D be a nontrivial �nite dimensional central division algebra over R. By Propo-
sition 4.1.13, dimRD = d2 is a perfect square, and by Proposition 4.4.4, D has a maximal
sub�eld P so that P/R is separable, and dimR P = d. Since the only nontrivial extension of
R is C, P = C = R(i) and d = 2, so dimRD = 4. Now consider the two homomorphisms

f : C→ D z 7→ z

g : C→ D z 7→ z

where z denotes the complex conjugate. By the Skolem-Noether theorem 4.2.1, there exists
j ∈ D× so that

z = jzj−1 ∀z ∈ C

In particular, jij−1 = −i. Note that since j does not commute with i, j does not lie in C.
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We claim j2 ∈ R. Note that since D is central, j (hence j2) commutes with R. Since
j2ij−2 = i, j2 commutes with C. Since j2 is a unit, C(j2) is a �eld, but since C is a maximal
sub�eld of D, C(j2) = C, hence j2 ∈ C. Since j2 commutes with j, jj2j−1 = j2. Since
j2 ∈ C and conjugation by j is complex conjugation, jj2j−1 = j2, hence j2 = j2, so j2 ∈ R.

Now we claim j2 < 0. Since j 6∈ R, its minimal polynomial over R is t2 − j2. But if
j2 > 0, this would be reducible into (t− j)(t+ j), which is a contradiction, so we must have
j2 < 0. Replacing j by j√

|j2|
, we may assume j2 = −1. We claim that 1, i, j, ij are linearly

independent over R. Suppose there are a, b, c, d ∈ R so that

a+ bi+ cj + dij = 0

Then if c+ di 6= 0, we get

(a+ bi) + (c+ di)j = 0 =⇒ j =
a+ bi

c+ di
=⇒ j ∈ C

which is impossible since we know j 6∈ C, so c = d = 0. Then a + bi = 0 =⇒ a = b = 0,
hence 1, i, j, ij are linearly independent. Thus D is four dimensional R-algebra with basis
1, i, j, ij satisfying relations i2 = j2 = −1 and ij = −ij, so D ∼= H.

4.6.4 Finite �elds - via �eld norm

Next we address absolute and relative Brauer groups of �nite �elds. The arguments are
interesting and illustrate the many tools we have, even though the eventual results are
somewhat uninteresting (all the groups are trivial). We will prove the following:

Proposition 4.6.11. Let K = Fq be the unique (up to isomorphism) �nite �eld of order q.
Then Br(K) = 0.

First, we give a proof which uses the description of Br(K) as H2(Gal(Ksep/K), (Ksep)×),
and properties of the �eld norm map.

Proof. Let q be a prime power, and let Fq be the �eld with q elements. By Proposition
3.12.6, we just need to show that H2 is trivial for the �nite Galois subextensions. The �nite
Galois extensions of Fq are Fqn for n ≥ 1, with cyclic Galois groups. Let

Gn = Gal(Fqn/Fq) ∼= Z/nZ

Then we have

Br(Fq) = Gal(Fsep
q /Fq),F×qn) = lim−→H2(Gal(Fqn/Fq),F×qn) = lim−→H2(Gn,F×qn)

Let N = NGn be the norm element, and recall that multiplication by the norm element of
Gn is the same as the �eld norm map

NG = N
Fqn
Fq : F×qn → F×q
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We know that the Tate cohomology is 2-periodic for �nite cyclic groups. Using this and the
fact that the �xed �eld of Gn is exactly Fq, we get

H2(Gn,F×qn) ∼= Ĥ0(Gn,F×qn) ∼=
(
F×qn
)Gn

/NGF×qn = F×q / im N
Fqn
Fq

Thus, we have reduced the problem to showing that the norm map is surjective for �nite
�elds, which is given in a lemma below.

Remark 4.6.12. As a quicker proof than the above to accomplish the same reduction, we
know that

Br(Fq) =
⋃
n≥1

Br(Fqn/Fq)

and each extension Fqn/Fq is cyclic, and by Theorem 4.6.6, the relative Brauer group is

Br(Fqn/Fq) ∼= Fq/N
Fqn
Fq (F×qn)

Hence if the norm map for �nite �elds is surjective, all of the relative Brauer groups vanish,
and hence the absolute Brauer group vanishes.

Lemma 4.6.13. The norm map for �nite �elds is surjective.

N
Fqn
Fq : F×qn � F×q

Proof. Recall that F×q consists of qth roots of unity. Similarly, Fqn consists of (qn − 1)th
roots of unity. Recall that the Galois group Gal(Fqn/Fq) is generated by the Frobenius
automorphism

φ : Fqn → Fqn x 7→ xq

Let α ∈ F×qn be a primitive (qn − 1)th root of unity, that is, a generator of F×qn . The norm is
the product of the Galois conjugates, so

N
Fqn
Fq (α) =

∏
σ∈G

σ(α) =
n−1∏
i=0

φi(α) =
n−1∏
i=0

αq
i

= α1+q+q2+···+qn−1

= α
qn−1
q−1

The last equality comes from the formula for the sum of a �nite geometric series. Then
observe that (

α
qn−1
q−1

)q−1

= αq
n−1 = 1

by de�nition of α. That is, the image of α under the norm map is a primitive (q− 1)th root
of unity, so it is a generator of F×q . Thus the norm map is surjective.

4.6.5 Finite �elds - via division algebras

For a second approach, we use the characterization of Br(K) in terms of division algebras.
We show that any �nite dimensional division algebra over a �nite �eld is commutative, so it
is a �eld (this is a classical result of Wedderburn). Since the elements of Br(K) correspond
to noncommutative central division algebras over K, this will show that Br(K) = 0. First,
we need a purely group-theoretic lemma.
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Lemma 4.6.14 (Finite group not equal to conjugates of proper subgroup). Let G be a �nite
group and H ⊂ G a proper subgroup. The union of all conjugates of H is not equal to G.
That is, ⋃

g∈G

gHg−1

is a proper subset of G.

Proof. Let KH = {gHg ∈: g ∈ G} be the set of conjugate subgroups to H. Then G acts on
KH by conjugation. The stabilizer of this action is exactly the normalizer of H in G, which
we denote NG(H). Note that H ⊂ NG(H), thus

[G : NG(H)] ≤ [G : H]

By the orbit-stabilizer theorem,

|KH | = [G : NG(H)]

Each conjugate subgroup of H has the same order as H, and also contains the identity, so
the maximum number of non-overlapping elements in each subgroup is |H| − 1, and there
are |KH | such conjugate subgroups. Thus∣∣∣∣∣⋃

g∈G

gHg−1

∣∣∣∣∣ ≤ (|H| − 1
)
|KH |+ 1

Now we do some trivial manipulations to this using facts established above.(
|H| − 1

)
|KH |+ 1 =

(
|H| − 1

)
[G : NG(H)] + 1

≤
(
|H| − 1

)
[G : H] + 1

= |H|[G : H]− [G : H] + 1

= |G| − [G : H] + 1

Since H is a proper subgroup, [G : H] ≥ 2, thus, the expression above is at most |G| − 1.
Thus the union of all conjugates of G has size strictly less than G, so it is not the whole
group.

Proposition 4.6.15 (Every �nite division algebra is a �eld). Let D be a �nite dimensional
central division algebra over a �nite �eld. Then D is commutative, hence a �eld.

Proof. Suppose D is a noncommutative �nite central division algebra over a �nite �eld F .
Let dimF D = n2 (Proposition 4.1.13). If n = 1 then D = F and we are done, so assume
n > 1. By Proposition 4.4.4, there is a maximal intermediate sub�eld F ⊂ P ⊂ D with
dimF P = n. Since F has a unique (up to isomorphism) extension of degree n, all maximal
sub�elds of D are isomorphic.

By the Skolem-Noether theorem 4.2.1, any two maximal sub�elds of D are conjugate.
More precisely, if P, P ′ two maximal sub�elds with embeddings ι : P ↪→ D, ι′ : P ↪→ D,
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and we �x an isomorphism φ : P
∼=−→ P ′ (isomorphism as K-algebras), then by the Skolem-

Noether theorem applied to the homomorphisms ι and ι′ ◦ φ, there exists d ∈ D such that
for all x ∈ P ,

ι′ ◦ φ(x) = d
(
ι(x)

)
d−1

Since ι, ι′ are inclusions, we can write this instead as

φ(x) = dxd−1

That is to say,
P → P ′ x 7→ dxd−1

is an isomorphism, which is what we mean when we say that P, P ′ are conjugate in D. Thus
if P is any one maximal sub�eld, then all other maximal sub�elds arise as conjugates dPd−1.
Now, every element of D is contained in some maximal sub�eld, so we obtain

D× =
⋃

P maximal
sub�eld

P× =
⋃
d∈D×

dP×d−1

Since D× is a �nite group and P× ⊂ D× is a proper subgroup, by our group theory lemma
4.6.14, this is a contradiction, so no such D exists.

Corollary 4.6.16. Let F be a �nite �eld. Then Br(F ) = 0.

Proof. Nonzero elements of Br(F ) correspond to equivalence classes of (noncommutative)
�nite dimensional central division algebras, but by Proposition 4.6.15, there are no such
division algebras.

4.6.6 Finite �elds - via C1-�elds

Lastly, we give an overly high-powered method to show that the Brauer group of a �nite
�eld is trivial, using the notion of C1-�elds. I know very little about this, but chapter 6 of
Gille & Szamuely is a good source.

De�nition 4.6.17. A �eldK is a C1-�eld if every homogeneous polynomial f ∈ K[x1, . . . , xn]
of degree d < n has a nontrivial zero in Kn.

Lemma 4.6.18. Let K be a C1-�eld, and L/K a �nite extension. Then L is a C1-�eld.

Proof. Gille and Szamuely 6.2.4 [4].

Proposition 4.6.19. Let K be a C1-�eld, and L/K a �nite extension. Then Br(L) = 0.

Proof. Gille and Szamuely 6.2.3 [4].

Theorem 4.6.20 (Chevalley-Warning). Finite �elds are C1-�elds.

Proof. Gille and Szamuely 6.2.6 [4].

Of course, an immediate corolary of all of this is that the Brauer group of a �nite �eld is
trivial.
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4.6.7 Relative Brauer group of maximal unrami�ed extension of a
local �eld

The next section requires some background on local �elds and their unrami�ed extensions.
By �local �eld,� I mean complete nonarchimedean discretely valued �eld, such as Qp. For
the reader who hasn't seen this material, see Chapter 6 for an introduction, or chapter 7 of
Milne [8], which is where I learned this from.

The main result is that there is a Galois-type correspondence between �nite unrami�ed
extensions of a local �eld K and �nite extensions of the residue �eld k, see Proposition 6.4.1.
In particular, since local �elds (as we use the term) have a �nite residue �eld, there is a
unique unrami�ed extension Kn/K of degree n. As long as you're familiar with that result,
you probably have enough knowledge of local �elds for this section.

Assuming the prerequisites are out of the way, our next goal is to use Theorem 4.6.6
and Lemma 4.6.7 to compute the relative Brauer group of �nite unrami�ed extensions, and
then put these together to compute the relative Brauer group of the maximal unrami�ed
extension.

De�nition 4.6.21. We use the notation 1
n
Z/Z =

(
1
n
Z
)
/Z to mean Z/nZ generated addi-

tively by 1
n
.

1

n
Z/Z =

{
1

n
,

2

n
, · · · , n− 1

n
,
n

n
= 1 = 0

}
De�nition 4.6.22. Let K be a local �eld with discrete valuation v : K× → Z. De�ne

UK×n =
{
α ∈ K× : v(α) ≡ 0 mod n

}
Note that there is an isomorphism

UK×n
∼=−→ 1

n
Z/Z α 7→ v(α)

n
(4.6.1)

Proposition 4.6.23 (Relative Brauer group of maximal unrami�ed extension). Let K be a
complete nonarchimedean local �eld.

1. Let Kn/K be the unique unrami�ed extension of degree n. There is an isomorphism

ψn : Br(Kn/K)
∼=−→ 1

n
Z/Z [(Kn, φ, α)] 7→ v(α)

n
mod Z

2. Let Kun/K be the maximal unrami�ed extension. The isomorphisms of (1) give an
isomorphism of directed systems, inducing an isomorphism

Br(Kun/K) =
⋃
n≥1

Br(Kn/K) ∼= Q/Z

Proof. As discussed in Example 6.4.3, for each n ≥ 1, K has a unique unrami�ed extension
Kn/K with Gal(Kn/K) ∼= Z/nZ, generated by the Frobenius isomorphsim φ. Then by
Theorem 4.6.6, we have an isomorphism

γKn/K : Br(Kn/K)
∼=−→ K×/NKn

K (K×n ) [(Kn, φ, α)] 7→ αNKn
K (K×n )
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By Proposition 3c of Chapter V, Section 2 of Serre [14],

K×/NKn
K (K×n ) ∼= UK×n

so composing this with the isomorphism of 4.6.1, we get an isomorphism

ψn : Br(Kn/K)
∼=−→ 1

n
Z/Z [(Kn, φ, α)] 7→ v(α)

n
mod Z

From remark 4.5.8, we know that

Br(Kun/K) = lim−→
n≥1

Br(Kn/K)

so next we need to understand the maps of this directed system. The ordering is by divis-
ibility, that is, m|n ⇐⇒ Km ⊂ Kn, in which case the Frobenius automorphism φ of Kn

restricts to the Frobenius automorphism φ|Km on Km. So for m|n we have an embedding
Br(Km/K) ↪→ Br(Kn/K), which by Lemma 4.6.7 can be described as

j : Br(Km/K) ↪→ Br(Kn/K) [(Km, φ|Km , α)] 7→ [(Kn, φ, α
n/m)]

Thus the following diagram commutes.

Br(Km/K) Br(Kn/K)

1
m
Z/Z 1

n
Z/Z

j

ψm∼= ψn∼=

i
1
m
7→ 1
m

i ◦ ψm[(Km, φ|Km , α)] =
v(α)

n

ψn ◦ j[(Km, φ|Km , αn/m] = ψn[(Kn, φ, α
n/m)] =

v(αn/m)

n
=

n
m
v(α)

n
=
v(α)

m

That is to say, the maps ψn give an isomorphism of directed systems, so Br(Kun/K) is
isomorphic to the direct limit of 1

n
Z/Z with respect to inclusion maps, which is Q/Z.

4.6.8 (Nonarchimedean, complete) local �eld

As before, let K be a local �eld. The next goal is to extend our result about Br(Kun/K) to
a result about Br(K) = Br(Ksep/K). The �nal result will be that Br(Kun/K) = Br(K), so
Br(K) ∼= Q/Z, by work from the previous section.

We will do this by studying central division algebras D over K and extending the valua-
tion and an analog of the norm map (called the reduced norm map) to D. We can then talk
about rami�cation degrees and residual degrees for such division algebras, which give us the
tools to prove our result.
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De�nition 4.6.24. Let D be a central division algebra over a �eld K. A valuation on D
is a map w : D× → R satisfying

w(ab) = w(a) + w(b)

w(a+ b) ≥ min
(
w(a), w(b)

)
for a 6= −b

(This coincides with the usual de�nition of a valuation on a ring, just viewing D as a ring.)
As in the general setting of rings, a valuation is discrete if the image is a discrete subgroup
of (R,+).5

Remark 4.6.25. Let K be a nonarchimedean complete local �eld, and L/K a �nite exten-
sion with n = [L : K]. Recall that by Proposition 6.1.16, the absolute value on K extends
uniquely to L via

|x|L = |NL
K(x)|1/nK x ∈ L×

In terms of valuations, if v : K× → R is the valuation corresponding to | · |K and ṽ : L× → R
is the valuation corresponding to | · |L, the previous equality translates to

ṽ(x) =
1

n
v
(
NL
K(x)

)
x ∈ L×

De�nition 4.6.26. Let K be a �eld, and D a division algebra over K, with dimK D = n2

(Proposition 4.1.13). By Proposition 4.4.4, D contains a maximal sub�eld P with dimK P =
n, and D ⊗K P ∼= Mn(P ) by Theorem 4.4.3. Fix an isomorphism φP : D ⊗K P → Mn(P ).
The reduced norm map is

NrdDK : D× → K× NrdDK(a) = det
(
φP (a⊗ 1)

)
Proposition 4.6.27. Let K be a �eld, and D a division algebra over K. Then

1. NrdDK is independent of the choice of P and of φP .

2. NrdDK : D× → K× is a group homomorphism.

3. The reduced norm extends the norm map in the following sense: For any maximal
sub�eld L ⊂ D, and for a ∈ L×,

NrdDK(a) = NL
K(a)

Proof. Proposition 8 of Rapinchuk [12], which refers to Chapter 16 of Pierce [11] for proofs.

De�nition 4.6.28. Let K be a nonarchimedean complete local �eld with discrete valuation
v : K× → R, andD a (�nite dimensional) division algebra overK of dimension dimK D = n2.
The extended valuation on D is de�ned by

w : D× → R w(a) =
1

n
v
(
NrdDK(a)

)
5Recall that any discrete subgroup of (R,+) is in�nite cyclic, aka isomorphic to Z.
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Proposition 4.6.29. Let D,K,w, v, n be as above. Let Γw = imw,Γv = im v.

1. The extended valuation w is a discrete valuation, which extends v.

2. nΓw ⊂ Γv.

Proof. (1) We verify that w extends v. Let L ⊂ D be a maximal sub�eld. If a ∈ K×, using
Proposition 4.6.27, then the fact that NL

K(a) = an for a ∈ K, we get

w(a) =
1

n
v
(
NrdDK(a)

)
=

1

n
v
(
NL
K(a)

)
=

1

n
v (an) = v(a)

Thus w extends v. The fact that w is a homomorphism follows immediately from the fact
that v and NrdDK are homomorphisms. All that remains is to verify the inequality

w(a+ b) ≥ min
(
w(a), w(b)

)
for a 6= −b. Let a, b ∈ D with a 6= −b, then

w(a+ b) = w
(
a(1 + a−1b)

)
= w(a) + w(1 + a−1b)

Let L ⊂ D be a maximal sub�eld containing a−1b, with extended valuation ṽ(x) = 1
n
v(NL

K(x)).
For x ∈ L×, by Proposition 4.6.27,

w(x) =
1

n
v
(
NrdDK(x)

)
=

1

n
v
(
NL
K(x)

)
= ṽ(x)

Applying this to 1, a−1b, 1 + a−1b ∈ L×, we get

w(1 + a−1b) = ṽ(1 + a−1b) ≥ min
(
ṽ(1), ṽ(a−1b)

)
= min

(
w(1), w(a−1b)

)
= min (w(1), w(b)− w(a))

Thus

w(a+ b) = w(a) + w(1 + a−1b) ≥ w(a) + min
(
w(1), w(b)− w(a)

)
≥ min

(
w(1) + w(a), w(b)

)
≥ min

(
w(a), w(b)

)
(2) This is an immediate consequence of (1), since

nw(a) = v
(
NrdDK(a)

)
Note that (2) also resolves the question of whether w is discrete.

De�nition 4.6.30. Let D,K,w, v, n,Γw,Γv be as above. The rami�cation index of D
over K is

e(D|K) = [Γw : Γv]

A uniformizer for D is an element Π ∈ D× such that w(Π) is the positive generator for
Γw. The valuation ring Ow of D is the subring

Ow =
{
a ∈ D× : w(a) ≥ 0

}
∪ {0}

145



with unit group 6

O×w =
{
a ∈ D× : w(a) = 0

}
The valuation ideal Pw of D is the two sided prinicipal ideal of Ow generated by Π (for
any choice of uniformizer).

Pw = ΠOw = OwΠ =
{
a ∈ D× : w(a) > 0

}
∪ {0}

The residue algebra of D is D = Ow/Pw. Note that D is a division ring, because every
nonzero element xPw is represented by a unit x ∈ O×w . It is an algebra over the residue �eld
k = Ov/pv. For a ∈ Ow, the image of a in D is denoted a. The residual degree of D over
K is

f(D|K) = dimkD

Lemma 4.6.31. Let D,K, v, w be as above; in particular, dimK D is �nite.

1. If a1, . . . , ar ∈ Ow are such that a1, . . . , ar ∈ D = Ow/Pw are linearly independent over
k = Ov/pv, then a1, . . . , ar are linearly independent over K.

2. The residual degree f(D|K) is �nite.

Proof. (1) Let a1, . . . , ar ∈ Ow be as in the statement of the proposition. Suppose a1, . . . , ar
are not linearly independent, so that there are λ1, . . . , λr ∈ K not all zero so that

r∑
i=1

λiai = 0

Set
J = {j : λj 6= 0} 6= ∅

so that ∑
j∈J

λjaj = 0 (4.6.2)

with all nonzero terms. For j ∈ J , we can choose a unit uj ∈ O×v so that

λj = πv(λj)uj

Then set
n = max {−v(λj) : j ∈ J}

so that for all j ∈ J , we have

n ≥ −v(λj) =⇒ n+ v(λj) ≥ 0 =⇒ πnλj = πn+v(λj)uj ∈ Ov

since v(πn+v(λj)uj) = n+ v(λj) ≥ 0. Let j0 ∈ J such that n = −v(λj0). Then

πnλj0 = π−v(λj0)+v(λj0 )uj0 = uj0 ∈ Ov \ pv
6We justify that this set is the group of units. If w(a) = 0, then 0 = w(1) = w(aa−1) = w(a) +w(a−1) =

w(a−1) so a−1 is also in Ow, so a ∈ O×w .. Conversely, if a ∈ O×w is a unit, then a−1 ∈ Ow. By the previous
equalities, w(a) = −w(a−1), and since a, a−1 ∈ Ow, w(a), w(a−1) ≥ 0, which is only possible if both zero.
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since v(uj0) = 0. Now multiply the linear relation 4.6.2 by πn, to obtain∑
j∈J

πnλjaj = 0

As we noted, πnλj ∈ Ov, so we obtain a linear relation in D.∑
j∈J

πnλjaj = 0 πnλj ∈ k, aj ∈ D

By linear independence of a1, . . . , ar over k, it follows from this relation that πnλj = 0 ∈ k,
that is, πnλj ∈ pv for all j ∈ J . But this is a contradiction, since we know that πnλj0 is not
in pv. (2) follows immediately from (1), since (1) implies dimkD ≤ dimK D, and dimK D is
�nite by assumption.

Proposition 4.6.32. Let K be a complete nonarchimedean local �eld and D a �nite dimen-
sional central division algebra over K. Then

e(D|K) = f(D|K) = n

and D contains an unrami�ed extension of K of degree n.

Proof. Proposition 10 of Rapinchuk [12].

Now we obtain the main result of this section, which identi�es Br(K) with the relative Brauer
group of the maximal unrami�ed extension, which we already know about.

Corollary 4.6.33. Let K be a complete nonarchimedean local �eld, with Kn the unique
unrami�ed extension of degree n, and Kun the maximal unrami�ed extension. Then

Br(K) =
⋃
n

Br(Kn/K) = Br(Kun/K)

Proof. Elements of Br(K) correspond to isomorphism classes of division algebras D over K.
By Proposition 4.6.32, if D is such a division algebra with dimK D = n2, then D contains
Kn, and by Theorem 4.4.3, D ∈ Br(Kn/K). Hence

Br(K) ⊂
⋃
n

Br(Kn/K)

and the opposite inclusion is by de�nition, so they are equal. The second equality comes
from Proposition 4.6.23.

The next theorem mostly just reiterates the previous corollary. It also answers the following
question: if K is a local �eld and L/K is a �nite extension, we know L is also a local �eld,
so now we know L,K have the same Brauer group, namely Q/Z. So what exactly is the
map Br(K)→ Br(L) in terms of the isomorphism with Q/Z?

It turns out to be just multiplication by the degree [L : K]. This is somewhat surprising
- the map Br(K)→ Br(L), at least in terms of the isomorphism with Q/Z, does not depend
on any features of L except [L : K]. For instance, it does not depend on whether L/K is
rami�ed or unrami�ed, so not that much information about L is captured in the relative
Brauer group Br(L/K).
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Theorem 4.6.34. Let K be a complete nonarchimedean local �eld with discrete valuation v.

1. There is an isomorphism iK : Br(K)
∼=−→ Q/Z.

2. If L/K is an extension of degree n, and ε : Br(K)→ Br(L) is the usual extension map
[A] 7→ [A⊗K L], then the following diagram commutes.

Br(K) Q/Z

Br(L) Q/Z

iK

ε n

iL

Proof. (1) In Proposition 4.6.23, we constructed an isomorphism of directed systems

ψn : Br(Kn/K)
∼=−→ 1

n
Z/Z [(Kn, φn, α)] 7→ v(α)

n
mod Z

where φn is the Frobenius automorphism of Kn and α ∈ K× is arbitrary. This induces an
isomorphism on the direct limits,

iK : Br(Kun/K) = Br(K)→ Q/Z [(Kn, φn, α)] 7→ v(α)

n
mod Z

(2) By Proposition 6.4.4, we can decompose L/K into an unrami�ed and totally rami�ed
extension.

L

M

K

totally ramified

unramified

If (2) holds for the extensionsM/K and L/M , then combining the two commutative squares
gives a commutative square for L/K, so it su�ces to prove (2) in the two separate cases
of totally rami�ed extensions, and unrami�ed extensions. For details, see Theorem 10 of
Rapinchuk [12].

Example 4.6.35. Let p be a prime. By the previous result, Br(Qp) ∼= Q/Z.

As previously discussed, the relative Brauer group Br(L/K) (when L,K are local) does n't
capture very much information about L. The next corollary makes this a bit more precise.
As we already noted, the map Br(K) → Br(L) only �sees� the degree [L : K], so it makes
sense that the kernel Br(L/K) would also �see� [L : K], which is what the corollary says.

Corollary 4.6.36. Let K be a complete nonarchimedean local �eld, and let Kn be the unique
unrami�ed extension of degree n. If L/K is an extension of degree n, then Br(L/K) ∼=
Br(Kn/K). That is, any two relative Brauer groups Br(L/K),Br(E/K) are isomorphic as
long as [L : K] = [E : K].
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Proof. By the commutative diagram of Theorem 4.6.34, the we have the following commu-
tative diagram with exact rows.

0 Q/Z[n] = kern = 1
n
Z/Z Q/Z Q/Z

0 Br(L/K) = ker ε Br(K) Br(L)

∼=

n

∼= ∼=

ε

By Proposition 4.6.23,

Br(Kn/K) ∼=
1

n
Z/Z ∼= Br(L/K)

Corollary 4.6.37. Let K be a complete nonarchimedean local �eld and let L/K be a Galois
extension of degree n. Then

H2(Gal(L/K), L×) ∼= Z/nZ

Proof. By Proposition 4.5.6,

H2(Gal(L/K), L×) ∼= Br(L/K)

By Corollary ??,

Br(L/K) ∼= Br(Kn/K) ∼=
1

n
Z/Z ∼= Z/nZ

Remark 4.6.38. The main application of Corollary 4.6.37 is to verify the one of the hy-
potheses of Tate's theorem 3.7.10 in the follow situation, which is important in local class
�eld theory.

Let K be a complete nonarchimedean discretely valued local �eld (such as Qp), and let
L/K be a �nite extension. Let G = Gal(L/K) and A = L×, so A is a G-module. By Galois
theory, all subgroups H ⊂ G are of the form Gal(L/E) where K ⊂ E ⊂ L is an intermediate
sub�eld. By Hilbert 90,

Ĥ1(H,A) = H1(Gal(L/E), L×) = 0

and by Corollary 4.6.37,

Ĥ2(H,A) = H2(Gal(L/E), L×) ∼= Z/mZ

where m = [L : E] = |H|. Thus, all the hypotheses of Tate's theorem 3.7.10 are satis�ed in
this situation.
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4.6.9 Quadratic number �eld

Let d be a square free integer, and consider the quadratic number �eld Q(
√
d), which is a

degree two extension of Q. In this section, we say what we can about the relative Brauer
group Br(Q(

√
d)/Q). Though we do not compute it fully, we at least reduce the problem to

a purely number theoretic equation solving problem.
The �rst basic obsevation is that Gal(Q(

√
d)/Q) is order 2 (so it is Z/2Z), and we know

that
Br(Q(

√
d)/Q) ∼= H2(Gal(Q(

√
d)/Q),Q(

√
d)×)

The cohomology group on the right is 2-torsion, because the Galois group is order 2. So
Br(Q(

√
d)/Q) is some 2-torsion group, or equivalently a vector space over Z/2Z, or equiva-

lently some big direct sum or product of copies of Z/2Z. So to determine the structure, we
just need to �gure out how many copies of Z/2Z there are. We might also be interested in
how to describe those algebras, but that's a secondary goal.

Now to describe the generators of copies of Z/2Z for this group. Since Gal(Q(
√
d)/Q) is

cyclic, we can use our characterization in terms of the norm map.

Br
(
Q(
√
d)/Q

)
∼= H2(Z/2Z,Q(

√
d)×) ∼= Q×/N(Q(

√
d)×

The norm map is
N(a+ b

√
d) = a2 − b2d

Note that
Q× =

{
−1, 2, 3, . . . |(−1)2 = 1〉 ∼= Z/2Z〈−1

}
⊕
⊕
p prime

Z〈p〉

It is clear that any prime square p2 is in the image of the norm (just take a = p, b = 0), so
the quotient is contained in ⊕

−1,p prime

Z/2Z

That is Br(Q(
√
d)Q) is a large direct sum of copies of Z/2Z, with one copy for each generator

(either −1 or a prime p) that is not in the image of the norm map N : Q(
√
d)× → Q×. So we

have reduced the problem to deciding which primes (and −1) can be written as p = a2− b2d
for a, b ∈ Q. Of course, if a, b are solutions to this, then a, b ∈ Z.
Example 4.6.39. Let d = −1. For a, b ∈ Z, a2 + b2 6= −1, so −1 gives a copy of Z/Z in
Br(Q(i)/Q). By a well known result of Lagrange, a prime is a sum of two squares if and
only if p ≡ 1 mod 4 or p = 2. So

Br(Q(i)/Q) ∼= Z/2Z〈−1〉 ⊕ Z/2Z〈2〉 ⊕
⊕

p≡1 mod 4

Z/2Z〈p〉

Remark 4.6.40. The cases d = −2, d = −3 were conjectured by Fermat and proved by
Lagrange. A prime can be written as p = a2 + 2b2 if and only if p ≡ 1 or p ≡ 3 mod 8.
A prime can be written as p = a2 + 3b2 if and only if p ≡ 1 mod 3. The case d = −5 was
also resolved by Lagrange, a prime can be written as p = a2 + 5b2 if and only if p ≡ 1 or
p ≡ 9 mod 20.

A general study of such equations is found in the book Primes of the Form x2 +ny2: Fermat,
Class Field Theory, and Complex Multiplication by David Cox [2].
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Chapter 5

Classical algebraic K-theory

These notes on algebraic K-theory do not have very many ties to the group cohomology and
Brauer group sections above. They are also closer to the sources in terms of material, so
this chapter is probably less useful for someone trying to learn algebraic K-theory than just
reading Milnor's book [10] or Rosenberg's book [13].

For those who are still here are that rousing endorsement, algebraic K-theory is the study
of and attempt to usefully de�ne an in�nite sequence of invariants K0(R),K1(R),K2(R), . . .
associated to a ring R, and Ki(R) is an abelian group. The association R 7→ Ki(R) is a
functor, as all good invariants are.

In order, we de�ne K0,K1,K2 and derive some properties of them where we can. On the
face of it, these three invariants do not seem to �hang together,� that is, there is not much
connecting them. Ideally, there would be something like the following: given a ring R and
an ideal I, we have a short exact sequence 0 → I → R → R/I → 0, and maybe there is a
long exact sequence

· · · → K1(I)→ K1(R)→ K1(R/I)→ K0(I)→ K0(R)→ K0(R/I)→ K1(I)

Unfortunately, this has many obstacles. First, we said that Ki(−) will be de�ned for a ring
R, and an ideal I is not a ring, so we would need to generalize to Ki of ideals. Second, once
we de�ne K0,K1,K2, it is not at all clear how to generalize the de�nition higher K-groups,
even K3.

It turns out that there is a way to overcome much of this - there are K-groups for ideals,
and there is even an exact sequence involving K0,K1,K2 (see Theorem 5.4.4). Despite this,
the obstacle of de�ning K3 proves to be too much, as we note in Remark 5.4.4, there is a
theorem of Swan which shows that there is no possible de�nition of a functor K3 which will
extend the exact sequence further.

Given this impossibility, why study algebraic K-theory at all? A better answer for this
question would be to look at Rosenberg's book [13] on applications of K-theory to various
other areas of mathematics. We won't worry so much about the applications, just building
up some of the theory.
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5.1 De�nition of K0(R) via projective modules

Given a ring R, a lot of the structure of R is captured by looking at the category of R-
modules. (We assume rings have a unit and are associative, but do not always assume they
are commutative.) The invariant K0(R) drills down even a bit further - we consider only
�nitely generated R-modules, to avoid dealing with things that are �too big,� and we restrict
attention to projective modules, since they have so many excellent properties.

5.1.1 Grothendieck group completion

Let R be a ring, and consider the category of �nitely generated projective modules. This
category has a convenient binary operation given by direct sum, which has an identity
(the trivial R-module). We might as well consider just isomorphism classes, too. So the
isomorphism classes of �nitely generated projective R-modules form a monoid, a set with a
binary operation and identity.

As invariants go, monoids aren't ideal, since we don't have a lot of theory of monoids. It
would be better if we had a group. Well, it turns out there's a way to just force a monoid
to turn into a group. Roughly speaking, you can just throw in inverse elements and force
group-ness on unsuspecting monoids. They never even see it coming.

Proposition 5.1.1 (Grothendieck group completion). Let S be a monoid. There is a unique
group G and monoid homomorphism θ : S → G with the following universal property: any
monoid homomorphism φ : S → H to a group H factors uniquely through G. That is, there
is a unique group homomorphism ψ : G→ H making the following diagram commute.

S G

H

θ

φ
ψ

Proof. This is not a thorough proof, merely a sketch. We write S multiplicatively with
identity element 1. G is constructed in the way you would expect. Consider the set

S t
{
s−1 : s ∈ S

}
formed by adding formal inverses to S, and de�ne ss−1 = s−1s = 1. Then quotient out all
relations that already exist in S, verify that the resulting monoid is in fact a group, and set

G = S t
{
s−1 : s ∈ S

}
/ ∼

The map θ : S → G is the obvious one, by sending s ∈ S to the class of s in G. The univeral
property comes out of this construction without too much di�culty.

De�nition 5.1.2. Let S be a monoid. The group G from the previous proposition is the
Grothendieck group completion of S.

Remark 5.1.3. While it seems plausible to guess that the special morphism S → G involved
in the group completion is always an injective function, this is not the case. A counterexample
is given in Proposition 5.1.6.
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The next lemma gives a somewhat obvious but convenient criterion for describing group
completions more concretely.

Lemma 5.1.4. Let S be a monoid, and suppose there is a monoid homomorphism θ : S → G
where G is a group, and the image of S generates G. Then G is the Grothendieck group
completion of S, and θ is the canonical homomorphism.

Proof. We show that G has the universal property. If φ : S → H is a monoid homomorphism
to a group H, there is a group homomorphism G→ H de�ned on generators θ(s) of G by

φ(θ(s)) = φ(s)

Clearly, this is also the only homomorphism possibly making the required triangle commute.

Next we give an example of when the canonical map from a monoid S to its group completion
G is not an injective function. If the reader is not interested, the example can be safely
skipped. In that case, jump to the next section.

De�nition 5.1.5. Let S be the set of points an,m with n ∈ Z≥0 and
m = 0 if n = 0, 1

m ∈ Z if n = 2

m ∈ {0, 1} if n ≥ 3

Graphically, we can depict S as the following set of points in the integer lattice. The
horizontal axis is the n variable, and the vertical axis is the m variable.

. . .

. . .

...

...

We give S an addition operation by

an,m + an′,m′ = an+n′,m+m′

where m+m′ is reduced mod 2 if n+n′ ≥ 3. This makes S an abelian monoid with identity
a0,0.
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Proposition 5.1.6 (Rosenberg [13] Exercise 1.1.7). Let S be the set de�ned above. The
Grothendieck group completion of S is G ∼= Z × Z/2Z, and the canonical homomorphism
S → G is not injective.

Proof. Let N = Z× 2Z ⊂ Z× Z be the sublattice as depicted below.

. . .

. . .

. . .

. . .

. . .

. . .

Then de�ne θ : S → (Z × Z)/N ∼= Z × Z/2Z by an,m 7→ (n,m mod 2). This is a monoid
homomorphism, since

θ(an,m + an′,m′) = θ(an+n′,m+m′) = (n+ n′,m+m′ mod 2) = (n,m mod 2) + (n′,m′ mod 2) = θ(an,m) + θ(an′,m′)

Also, the image of S under θ includes (1, 0) and (0, 1), as seen below.

θ(a1,0) = (1, 0) θ(a2,3)− θ(a2,2) = (2, 3)− (2, 2) = (0, 1)

Thus θ(S) generates (Z×Z)/N , so by Lemma 5.1.4, Z×Z/2Z is the Grothendieck group of
S and θ is the canonical homomorphism. Finally, it is clear that θ is not injective, because
θ(a2,0) = θ(a2,2).

5.1.2 De�nition of K0

We started our discussion of group completions by discussion the monoid of isomorphism
classes of �nitely generated projective R-modules under ⊕, so it's no surprise that we're
going to form the group completion of that particular monoid.

De�nition 5.1.7. Let R be a commutative ring with unity. The isomorphism classes of
�nitely generated projective modules over R form a monoid with respect to direct sum.
K0(R) is de�ned to be the Grothendieck group completion of this monoid.

Concretely, this means that elements of K0(R) are isomorphism classes [P ] of projec-
tive R-modules, along with their formal inverses −[P ], and addition in K0(R) is given on
projective modules by

[P ] + [Q] = [P ⊕Q]

Equivalently, we can describe K0(R) as the free abelian group generated by isomorphism
classes [P ] of projective R-modules, modulo the above relation.

Now we have half of a functor (the part on objects, R 7→ K0(R)), so we need to describe
how the functor K0 acts on ring homomorphisms.
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De�nition 5.1.8. Let f : R→ R′ be a ring homomorphism. The induced map on K0 is

f# : K0(R)→ K0(R′) [P ] 7→ [R′ ⊗R P ]

This tensor product makes sense becuase R′ has an R-module structure via f . If P is �nitely
generated and projective (over R), then R′ ⊗R P is �nitely generated and projective (over
R′), so this is a well de�ned map. Since the tensor product distributes over direct sums, this
is a homomorphism of abelian groups. It is clear that f# is functorial as well, that is,

(IdR)# = IdK0(R) (f ◦ g)# = f# ◦ g#

This makes K0 a covariant functor from the category of commutative rings with unity to the
category of abelian groups.

Remark 5.1.9. Let R be a commutative ring. K0(R) is already an abelian group under ⊕.
We can also give it a multiplication operation via ⊗ (tensor over R).

[P ]⊗ [Q] = [P ⊗Q]

There is some mild checking to verify this is well de�ned: one veri�es that the tensor product
of �nitely generated modules is �nitely generated, and that the tensor product of projective
modules is projective. The multiplicative unit is then [R], since

[P ]⊗ [R] = [P ⊗R] = [P ]

We don't usually think much about the ring structure on K0(R), mostly because other K-
groups do not have such obvious ring structures, so it's more holistic to consider them all as
abelian groups.

5.1.3 Necessity of �nite generation

It might be tempting to throw away the ��nitely generated� part of de�ning K0(R), but the
following proposition shows that this leads to the whole theory being somewhat trivial. That
is to say, without the �nite generation hypothesis, K0 would be less interesting.

Proposition 5.1.10 (Eilenberg Swindle). Let R be a ring, and let S be the set of isomor-
phism classes of countably generated projective R-modules, with addition given by [P ]+[Q] =
[P ⊕Q]. Let G be the group completion of S. Then G is trivial.

Proof. It su�ces to show that for any countably generated projective R-module P , the class
[P ] is zero in G. Let P be a countably generated projective R-module. We denote the
countably generated free R-module by R∞. Then there is an R-module Q such that

P ⊕Q ∼= R∞

Then

P ⊕R∞ ∼= P ⊕R⊕R⊕ · · ·
∼= P ⊕ (Q⊕ P )⊕ (Q⊕ P )⊕ · · ·
∼= (P ⊕Q)⊕ (P ⊕Q)⊕ · · ·
∼= R∞
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which induces the equality

[P ] + [R∞] = [R∞] =⇒ [P ] = 0

in G.

5.1.4 K0 of a PID

We give just a few examples of computation of K0, and �computation� is a strong word for
it.

Example 5.1.11. Let R be a PID (this includes �elds). Then every projective module
over R is free, hence the isomorphism classes of projective R-modules are determined by
dimension. Dimension is additive with respect to direct sum, so we obtain an isomorphism

dim : K0(R)→ Z [P ] = [Rn] = n[R] 7→ dimP = n

Example 5.1.12. Let R be a Dedekind domain (such as a ring of integers of a number
�eld). Then

K0(R) ∼= Cl(R)⊕ Z

where Cl(R) denotes the class group. We do not dedicate the space to prove it, but it can
be found in chapter one of Milnor [10].

5.2 De�nition of K1(R) via in�nite general linear group

Rather than dwell on K0 for any longer, we move right along to de�ning K1. Somewhat
strangely, there is little overlap in setup - K1 does not involve a group completion, or projec-
tive modules. Instead, the starting point is the group of invertible matrices over R, GL(n,R).

De�nition 5.2.1. Let R be a ring. The in�nite general linear group GL(R) is the direct
limit of the chain of inclusions

GL(1, R) ⊂ GL(2, R) ⊂ GL(3, R) ⊂ · · ·

where GL(n,R) embeds into GL(n + 1, R) by adding an extra column and row of zeroes,
except for a 1 in the bottom right corner.

A 7→
(
A 0
0 1

)
Thus GL(R) is the direct limit of all GL(n,R) where A ∈ GL(n,R) is identi�ed with its
images under the in�nite chain of embeddings. (The direct limit is just the disjoint union,
modulo the obvious identi�cations.) It is reasonable, though not entirely accurate, to think
of GL(R) as �in�nite matrices� which di�er from the �in�nite identity matrix� in only �nitely
many entries.
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De�nition 5.2.2. An element of GL(R) is an elementary matrix if it di�ers from the
identity in exactly one o�-diagonal entry. We denote the matrix with r in the ijth o�
diagonal entry by erij. The subgroup generated by all elementary matrices is E(R).

Remark 5.2.3. The following relations are not immediately obvious, but also not interesting
to prove. Let i, j, k, ` be positive integers and r, s ∈ R.

erije
s
ij = er+sij

[
erij, e

s
k`

]
=


1 j 6= k, i 6= `

ersi` j = k, i 6= `

e−srkj j 6= k, i = `

Lemma 5.2.4 (Whitehead lemma). E(R) is equal to the commutator subgroup of GL(R).

Proof. It is easy to show E(R) ⊂ [GL(R),GL(R)] by exhibiting each elementary matrix
as a commutator of two matrices, which is immediate from the previous relations. The
reverse inclusion is not quite as easy. Very roughly speaking, the proof is just Gaussian
elimination.

De�nition 5.2.5. The Whitehead group K1(R) is the quotient

GL(R)/E(R) = GL(R)/[GL(R),GL(R)] = GL(R)ab

In other words, K1(R) is the cokernel of the inclusion E(R) ↪→ GL(R).
A ring homomorphism f : R → R′ induces homomorphisms GL(n,R) → GL(n,R′) for

all n, and passing to the direct limit give a morphism GL(R) → GL(R′). Passing to the
abelianization, we obtain an induced map f∗ : K1(R) → K1(R′) making K1 a covariant
functor.

5.2.1 K1 of a Euclidean domain

To give some example computations of K1 for Euclidean and Dedekind domains, we �rst
need a lemma.

Lemma 5.2.6 (E = SL for Euclidean domain). Let R be a Euclidean domain. Then
E(n,R) = SL(n,R), and hence E(R) = SL(R). If R is a Dedekind domain, then it is
not necessarily true the E(n,R) = SL(n,R), but E(R) = SL(R) does hold.

Proof. The proof for a Euclidean domain is, very roughly speaking, just the process of doing
Gaussian elimination 1. I have no idea why this is true for a Dedekind domain.

Example 5.2.7. Let R be a Euclidean domain (this includes �elds). By the previous lemma,
E(R) = SL(R), so

K1(R) = GL(R)/ SL(R)

1�The special linear group over a �eld or a Euclidean domain is generated by transvections, and the stable
special linear group over a Dedekind domain is generated by transvections.� https://en.wikipedia.org/

wiki/Special_linear_group
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Considering the exact sequence

0 SL(R) GL(R) R× 0det

by the 1st isomorphism theorem,

K1(R) = GL(R)/ SL(R) ∼= R×

5.3 The functor K2

While the connection between K0 and K1 remains mysterious at this point, the connection
between K1 and K2 is more immediately obvious. Recall that K1 was the cokernel of E(R)→
GL(R). We will identify another group St(R) (the Steinberg group) which maps to GL(R)
with image E(R), so we can realize K1(R) also as the cokernel of St(R)→ GL(R).

St(R)→ GL(R)→ K1(R)→ 0

Thinking categorically, one thing to consider next is the kernel of St(R) → GL(R). This
is exactly our de�nition of K2(R). First, though, we need to put in some work to properly
de�ne the Steinberg group St(R).

5.3.1 De�nition of K2 via the Steinberg group

Recall the various commutator relations that we wrote down for elementary matrices.

erije
s
ij = er+sij

[
erij, e

s
k`

]
=


1 j 6= k, i 6= `

ersi` j = k, i 6= `

e−srkj j 6= k, i = `

It is not so easy to tell whether these are all the relations in E(R), or if there are more. In
particular, other relations may depend on the structure of the ring R. To avoid dealing with
this to some degree, and also to make an attempt to answer the question of when these are
su�cient relations, we abstract the relations into another group which we de�ne to have just
�these relations.� That group is what we call the Steinberg group.

De�nition 5.3.1. Let R be a ring and let n ≥ 3. The Steinberg group St(n,R) is the
group generated by symbols xrij for 1 ≤ i, j ≤ n, i 6= j, r ∈ R subject to the following
relations.

xrijx
s
ij = xr+sij[

xrijx
s
j`

]
= xrsi` i 6= `[

xrij, x
s
k`

]
= 1 j 6= k, i 6= `

The stable Steinberg group or just Steinberg group, denoted St(R) is the direct limit
of all St(n,R) via the obvious inclusions St(n,R) ↪→ St(n+ 1, R).

Alternately, it is reasonable to think of St(R) as the group generated by xrij for all
i, j ∈ Z≥1 and r ∈ R, subject to the above relations.
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De�nition 5.3.2. The canonical homomorphism from the Steinberg group to the general
linear group is

φ : St(n,R)→ GL(n,R) xrij 7→ erij

Clearly the image is E(n,R). This is a homomorphism precislely because we only imposed
relations on the xrij which we already know to be true for erij. Passing to the direct limit, we
obtain a homomorphism

φ : St(R)→ GL(R)

with image E(R).

De�nition 5.3.3. The kernel of the canonical homomorphism St(R) → GL(R) de�ned
above is denoted K2(R). Note that a homomorphism of rings f : R → R′ induces a homo-
morphism on St(R) via

xrij 7→ x
f(r)
ij

hence induces a homomorphism on K2(R), making K2 a covariant functor. Also note that it
�ts into an exact sequence

1→ K2(R)→ St(R)→ GL(R)→ K1(R)→ 1

Remark 5.3.4. In contrast with K0,K1, we cannot at this point give any examples of
computations for K2. Recall that for K0,K1 we really only tackled very special cases in our
examples, where R was a Euclidean domain or Dedekind domain. These include the case of
�elds, at least. In the case of K2, even the case when R is a �eld is not a reasonable example
computation - it is a major theorem of Matsumoto, which we get to in a few sections.

5.4 Exact sequence involving K-groups

In this section, we give our only real link between the groups K0 and K1,K2 via some exact
sequences. However, the presentation is incredibly hand-wavy, so for any level of detail other
sources should be consulted.

Remark 5.4.1. For a ring R, and an ideal I, there are sensible de�nitions of K2 I,K1 I,K0 I.
See Milnor [10] chapters 4 and 6.

Theorem 5.4.2. Let R be a ring (not necessarily commutative) and I a two-sided ideal.
There is an exact sequence

K2 I → K2R→ K2R/I → K1 I → K1R→ K1R/I → K0 I → K0R→ K0R/I

Proof. See chapters 3,4,6 of Milnor [10].

Theorem 5.4.3 (�Mayer-Vietoris� sequence). Suppose we have a commutative square of
rings (not necessarily commutative)

R R1

R2 R′

i1

i2 j1

j2

satisfying
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1. R is the product of R1, R2 over R
′. That is, for r1 ∈ R1, r2 ∈ R2, with j1(r1) = j2(r2) ∈

R′, there exists a unique r ∈ R such that i1(r) = r1, i2(r) = r2.

2. At least one of j1, j2 is surjective.

Then there is an exact sequence,

K1R→ K1R1 ⊕K1R2 → K1R
′ → K0R→ K0R1 ⊕K0R2 → K0R

′

If the original commutative square also satis�es

3. All maps i1, i2, j1, j2 are surjective.

The the exact sequence can be extended to the left as follows.

K2R→ K2R1 ⊕K2R2 → K2R
′ → K1R→ · · ·

Proof. See chapters 3,4,6 of Milnor [10].

Remark 5.4.4. Unfortunately, there is a result of Swan that there is no functor K3 which
will extend the previous two exact sequences further to the left. This may be taken as a sign
that the de�nitions of K-groups for ideals given by Milnor "may not be too useful," to quote
Milnor himself (Milnor [10] Remark 6.5).

5.5 Universal central extensions of groups

In an attempt to compute some K2 groups, even for just a �eld, we begin with some theory
of universal central extensions of groups. The eventual purpose of this is to identify K2(R)
with the group homology group H2(E(R),Z), which is hopefully more computable, given our
various tools for group homology.

We use Z(G) or center(G) to denote the center of a group G. Our study of central
extensions is motivated by the following result.

Theorem 5.5.1 (Milnor [10] 5.1). K2(R) = center(St(R)).

Because of this, we have a short exact sequence of groups

1→ K2(R)→ St(R)→ E(R)→ 1

where (the image of) K2(R) lies in the kernel of St(R)→ E(R). We will study sequences of
this type in more abstract generality, before returning to K2(R) and St(R). Eventually, we
will see that St(R) is not merely one example of such a situation, it is a very special type,
called a universal central extension.
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5.5.1 De�nitions

Now we embark on a full study of central extensions, develop various criteria for when an
extension is universal, and when a universal extension exists.

De�nition 5.5.2. A central extension of a group G is a group X along with a surjective
homomorphism φ : X → G such that kerφ ⊂ center(X). It is often denoted by (X,φ).

De�nition 5.5.3. Let (X,φ) and (Y, ψ) be central extensions of G. A homomorphism
X → Y over G is a homomorphism making the following triangle commute.

X Y

G
φ ψ

Thinking categorically, we could observe that central extensions of G form a category, with
the morphisms being group homomorphisms over G. Then we could de�ne a universal
central extension as an initial object in this category. Alternatively, we give a more
concrete de�nition below.

De�nition 5.5.4. A universal central extension of a group G is a central extension
(U, v) such that for any central extension (X,φ), there is a unique homomorphism U → X
over G.

U X

G

v φ

As a consequence of the universal property, if such (U, v) exists, it is unique up to isomor-
phism. As a consequence of the uniqueness of the homomorphism, any map U → U over G
must be the identity.

De�nition 5.5.5. A central extension (X,φ) is split if there is a section s : G→ X so that
φs = IdG.

X G
φ

s

Note that if (X,φ) splits, then X ∼= G× kerφ via

X → G× kerφ x 7→
(
φx, xsφ

(
x−1
) )

G× kerφ→ X (g, x) 7→ s(g)x

De�nition 5.5.6. A group G is perfect if G = [G,G].

Example 5.5.7. Let R be a commutative ring. The groups E(n,R) and E(R) are pefect,
as a consequence of the basic commutator computations of elementary matrices. Similarly,
the groups St(n,R) and St(R) are perfect, because of the �same� commutator relations in
the Steinberg group.
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5.5.2 Criterion for universality

Our next goal is to prove the following criterion for a central extension to be universal.

Theorem 5.5.8 (Milnor [10] 5.3). A central extension U of G is universal if and only if U
is perfect and every central extension of U splits.

We'll build up to the proof with several lemmas.

Lemma 5.5.9 (Milnor [10] 5.4). Let (X,φ) and (Y, ψ) be central extensions of G. If Y is
perfect, there exists at most one homomorphism from Y to X over G.

Proof. Let f1, f2 : Y → X be homomorphisms over G.

Y X

G

f1

f2

ψ φ

For y ∈ Y , we have
f1(y) = f2(y)c

with c ∈ kerφ. (Concretely, c = f2(y)−1f1(y), but whatever.) Now for y, z ∈ Y , we have

f1(yzy−1z−1) =
(
f2(y)c

)(
f2(z)c

)(
f2(y−1)c−1

)(
f2(z−1)c−1

)
= f2(yzy−1z−1)

Since Y is perfect, it is generated by commutators, and since f1, f2 agree on commutators,
they are the same homomorphism.

Lemma 5.5.10 (Milnor [10] 5.5). Every universal central extension is a perfect group.

Proof. We'll prove the contrapositive, which is the following: If (Y, ψ) is a central extension
of G with Y not perfect, then (Y, ψ) is not universal. In particular, we'll prove that the
uniqueness property can fail, by constructing central extension (X,φ) (of G) so that there
is more than one homomorphism from Y to X over G.

Let (Y, ψ) be a central extension of G, which is not perfect. Then πY : Y → Y ab =
Y/[Y, Y ] is a nonzero homomorphism. Consider the central extension πG : G × Y ab →
G, (g, y) 7→ g. De�ne f1, f2 : Y → G× Y ab by f1 = ψ × 1 and f2 = ψ × πY .

f1(y) = (ψy, 1) f2(y) = (ψy, πY y)

These are two distinct homomorphisms Y → G× Y ab over G.

Y G× Y ab

G

f1

f2

ψ πG
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Lemma 5.5.11 (Milnor [10] 5.6). If (X,φ) is a central extension of a perfect group G. Let
X ′ = [X,X]. Then φ|X′ : X ′ → G is surjective, and X ′ is perfect. Thus, (X ′, φ|X′) is a
perfect central extension of G.

Proof. Since G is generated by commutators and φ : X → G is surjective, it is immediate
that φ : X ′ → G is surjective. Now we just need to show that X ′ is perfect.

We claim that every element x ∈ X can be written as x = x′c with x′ ∈ X ′, c ∈ center(X).
Let x ∈ X. By surjectivity of φ|X′ , there is x′ ∈ X ′ with φ(x) = φ(x′). Then let c = (x′)−1x ∈
kerφ ⊂ center(X), so we can write x = x′c with x′ ∈ X ′, c ∈ center(X). Now, a generator
[x, y] of X ′ can be written as

[x, y] = [x′c, y′d] = [x′, y′]

with x′, y′ ∈ X ′, c, d ∈ center(X). Thus X ′ is generated by its own commutators, so X ′ is
perfect.

Lemma 5.5.12 (roughly Milnor [10] page 45). Let (U, v) be a central extension of a group
G, with U perfect. Then if (X,φ) is a central extension of U , the composition vφ : X → G
is a central extension of G.

Proof. It su�ces to show ker vφ ⊂ Z(X). Let x ∈ ker(vφ). Then φx ∈ ker v ⊂ center(U).
Thus the map

σx : X → X y 7→ xyx−1

is a homomorphism over U .

φσx(y) = φ(xyx−1) = (φx)(φy)(φx)−1 = (φy)(φx)(φx)−1 = φy

X X

U

σx

φ φ

Let X ′ = [X,X] and consider σx|X′ . Since U is perfect, by Lemma 5.5.11, X ′ is perfect.
Then by Lemma 5.5.9, there is a unique homomorphism X ′ → X ′ over U . Since the identity
is such a map, by uniquess we have σx|X′ = IdX′ .

X ′ X ′

U

σx=Id

φ φ

That is to say, x ∈ ker vφ commutes with elements of X ′. By a similar argument as before,
we can write any element y ∈ X as a product y′c with y′ ∈ X ′ and c ∈ center(X). Thus x
commutes with any element of X, hence x ∈ center(X).

x(y′c) = (y′x)c = (y′c)x

Thus (X, vφ) is a central extension of G.
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Lemma 5.5.13 (Milnor [10] page 45). Let (U, v) be a universal central extension of a group
G. Then every central extension of U splits.

Proof. By Lemma 5.5.10, U is perfect, so by Lemma 5.5.12 the (X, vφ) is a central extension
of G. Now by universality of U , there is a unique homomorphism s : U → X over G. Then
φs : U → U is a homomorphism over G, so by uniqueness φs = IdU .

U X U

G

s

v
vφ

φ

v

Thus s is a section of (X,φ), so it is split.

Now we combine all of our lemmas together, and do a bit more work to get the �nal criterion
for universality.

Theorem 5.5.14 (Milnor [10] 5.3). A central extension U of G is universal if and only if
U is perfect and every central extension of U splits.

Proof. Suppose (U, v) is a universal central extension of a group G. By Lemma 5.5.10, U
is perfect, and by Lemma 5.5.13, every central extension of U splits. This completes one
direction of the proof. All that remains to show is that if (U, v) is a central extension with
U perfect and every central extension of U splits, then (U, v) is universal.

Let (U, v) be a central extension with U perfect, and suppose that every central extension
of U splits. Let (X,φ) be a central extension of G. Form the pullback

U ×G X = {(u, x) ∈ U ×X : v(u) = φ(x)}

U ×G X X

U G

πX

πU φ

v

The (U ×G X, πU) is a central extension of U , since

(u, x) ∈ kerπU =⇒ u = 1

=⇒ v(u) = φ(x) = 1

=⇒ x ∈ kerφ ⊂ center(X)

=⇒ (x, u) ∈ center(U ×G X)

By hypothesis, every central extension of U splits. so there is a section s : U → U ×G X, so
s(u) = (u, hu) for some homomorphism h : U → X. This h is the required homomorphism
U → X over G.

φh(u) = φπX(u, hu) = vπU(u, hu) = v(u)

U X

G

h

v φ

Since U is perfect, by Lemma 5.5.9, h is unique.
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Using group homology, we can give an alternate form of the previous criterion, which is
sometimes easier to check.

Proposition 5.5.15 (Group homology criterion for universal central extension). Let G be a
perfect group. A central extension E of G is universal if and only if H1(E,Z) = H2(E,Z) =
0. 2

Proof. By Theorem 5.5.14,

E is universal ⇐⇒ E is perfect and every central extension of E splits

By Corollary 3.6.9,
E is perfect ⇐⇒ H1(E,Z) = 0

By Corollaries 3.5.5 and 3.6.11,

Every central extension of E splits ⇐⇒ H2(E,A) = 0 for every trivial E-module A

⇐⇒ Eab is free abelian and H2(E,Z) = 0

From this it is clear that if E is the universal central extension, then H1(E,Z) = H2(E,Z) =
0. For the converse, if H1(E,Z) = H2(E,Z) = 0, then Eab = H1(E,Z) = 0 is somewhat
vacuously free abelian, hence by our equivalences E is universal.

5.5.3 Criterion for existence of universal central extension

Now that we have a criterion for when an extension is universal, we can use it to say when
exactly a group G has a universal central extension.

Perhaps this is too obvious to note, but there is no reason to expect that every group
G has a universal central extension. First of all if G does, then G is a quotient of a perfect
group, so G is perfect. It turns out that this one obvious necessary condition is also su�cient.

We begin with a few simple group-theoretic lemmas.

Lemma 5.5.16 (Commutator of normal subgroups is normal). Let G be a group, with H,K
normal subgroups. Then [H,K] is normal in G.

Proof. It su�ces to show that for g ∈ G, conjugating a generator of [H,K] gives an element
of [H,K].

g[h, k]g−1 = ghkh−1k−1g−1 = (ghg−1)(gkg−1)(ghg−1)(gkg−1)

Since H,K are normal, ghg−1 ∈ H, etc. Thus this �nal product is a generator of [H,K].

Lemma 5.5.17 (Taking commutators commutes with taking quotients). Let G be a group
with N a normal subgroup. Then [G/N,G/N ] = [G,G]/N (equality as subsets of G/N).

Proof. The generators of [G/N,G/N ] are elements [xN, yN ] with x, y ∈ G. Generators
of [G,G]/N are [x, y]N . But these two types of generators are the same, because of how
multiplication in G/N is de�ned.

2Z is viewed as a trivial E-module.
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With these two lemmas in hand, we can prove that our one necessary condition (being
perfect) is also su�cient (to have a universal central extension).

Theorem 5.5.18 (Milnor [10] 5.7). A group G has a universal central extension if and only
if G is perfect.

Proof. One direction is immediate from our previous work, as we now describe. Suppose
G has a universal central extension (U, v). We know U is perfect by Theorem 5.5.14, and
G ∼= U/ ker v is a quotient of a perfect group, so G is perfect.

Conversely, suppose G is perfect. Choose a surjective group homomorphism ψ from a
free group F onto G.

1 kerψ F G 1
ψ

Let N = [kerψ, F ]. By Lemma 5.5.16, N is normal in F . Also, N ⊂ kerψ, since if
a ∈ kerψ, b ∈ F , then

ψ[a, b] = (ψa)(ψb)(ψa)−1(ψb)−1 = (ψb)(ψb)−1 = 1

Thus we have a surjection
φ : F/N → F/ kerψ ∼= G

The kernel of φ is central. (Why? Let x ∈ kerφ. Then it has a representative x ∈ kerψ.
Then for y ∈ F/N , we have

[x, y] = xyx−1y−1N = N

since x ∈ kerψ.) Then by Lemma 5.5.11, the commutator subgroup

(F/N)′ = [F/N, F/N ] = [F, F ]/N

is a perfect central extension of G. The last equality is from Lemma 5.5.17. Finally, we
show that the perfect central extension [F, F ]/N → G is universal, by showing the universal
property directly. Let (X,α) be a central extension of G. Since F is free, there exists a
homomorphism h : F → X over G.

F X

G

h

ψ
α

We claim that h(N) = 1. Take a generator of N , [k, f ] with k ∈ kerψ, f ∈ F . Then

1 = ψ(k) = αh(k) =⇒ h(k) ∈ kerα ⊂ center(X)

Thus
h[k, f ] = [h(k), h(f)] = 1
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Since h(N) = 1, h induces a homomorphism h : F/N → X over G.

F/N X

G

h

φ
α

Then we restrict to [F, F ]/N .

[F, F ] /N X

G

h

φ
α

Thus the required homomorphism exists. It is unique by Lemma 5.5.9.

5.5.4 Application - K2(R) ∼= H2(E(R),Z)

Now we get to reap the bene�ts of our work with central extensions and extract information
about K2 from it.

Theorem 5.5.19 (Milnor [10] 5.1 or Rosenberg [13] 4.2.7). St(R) is the universal central
extension of E(R).

Proof. We already observed that St(n,R) is perfect, and similarly St(R) is perfect, as a
consequence of the de�ning relations. Using our criterion, the theorem is true if we show the
following.

1. kerφ, also know as K2(R), is a central subgroup of St(R), so that St(R) is a central
extension of E(R). We already mentioned this without proof as Theorem 5.5.1.

2. Every central extension of St(R) splits.

Both of these are doable, but take a few pages of proof. The proofs are not that interesting,
though. It's mostly just playing with group relations.

Next is the key result linking universal central extensions to group homology. As an immedi-
ate corollary, we will obtain an identi�cation of K2(R) with the homology groupH2(E(R),Z).

Theorem 5.5.20 (Rosenberg [13] 4.1.19). Let G be a perfect group, and (E, φ) be the uni-
versal central extension with N = kerφ. Then N ∼= H2(G,Z). Furthermore, under the
isomorphisms

Ext(G,N) ∼= H2(G,N) ∼= HomZ(H2(G,Z), N)

the class of the extension (E, φ) corresponds to an isomorphism H2(G,Z)
∼=−→ N .
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Proof. Let G,E, φ,N be as in the statement of the theorem, and let A be an abelian group,
viewed as trivial module over E and G and N . Consider the in�ation-restriction sequence
(Proposition 3.9.20).

H1(E,A) H1(N,A)E/N H2(E/N,AN) H2(E,A)Res τ Inf

We simplify each term, from left to right.
(Term 1) Since E is perfect, Eab = 0, and because A is a trivial E-module, by Proposition
3.2.7,

H1(E,A) ∼= HomZ(Eab, A) = 0

(Term 2) By the �rst isomorphism theorem, E/N ∼= G, which acts trivially only H1(N,A),
and since A is a trivial N -module, using Proposition 3.2.7 again,

H1(N,A)E/N = H1(N,A) ∼= HomZ(N,A)

(Term 3) A is a trivial N -module so AN = A, so H2(E/N,AN) ∼= H2(G,A). Then since
the SES of the universal coe�cient theorem (3.6.10) is split,

H2(G,A) ∼= Ext1
Z(H1(G,Z), A)⊕ HomZ(H2(G,Z), A)

Since G is perfect and Gab = 0, since H1(G,Z) ∼= HomZ(Gab, A) (Proposition 3.2.7 again) is
zero, so the Ext1 term vanishes, and

H2(E/N,AN) ∼= H2(G,A) ∼= HomZ(H2(G,Z, A))

(Term 4) Since E is universal, every central extension of E splits by Theorem 5.5.14, so by
Corollary 3.5.5, H2(E,A) = 0. After all these substitutions, the exact sequence becomes

0 HomZ(N,A) HomZ(H2(G,Z), A) 0
∼=

Since A was an arbitrary abelian group, these isomorphism together with the Yoneda lemma
imply N ∼= H2(G,Z).

To prove the second claim of the theorem, that the extension E corresponds to an iso-
morphism H2(G,Z) → N , requires tracing the construction of the transgression map τ of
the in�ation-restriction sequence, see Theorems 4.1.19, 4.1.20 of Rosenberg [13] for details
on this.

Corollary 5.5.21 (Rosenberg [13] 4.2.10). Let R be a commutative ring with unity. Then

K2(R) ∼= H2(E(R),Z)

Proof. By Theorem 5.5.19, St(R) is the universal central extension of E(R), and by de�nition,
K2(R) is the kernel.

1→ K2(R) ↪→ St(R)
φ−→ E(R)→ 1

Thus by Theorem 5.5.20,
K2(R) ∼= H2(E(R),Z)

168



Having accomplished all that we set out to do in identifying K2(R) with H2(E(R),Z), we
now ask, what does this give us? Can we say anything about the homology group which we
did not know about K2(R)? Not at this point, unfortunately. Even if R is a �eld, E(R) may
still be a complicated group, and computing H2 groups, even with coe�cients in Z, is not
trivial. But it is a good start.

5.6 K2 of a �eld

We have been rather down on the possibility of computing K2 of a �eld using simple tools,
but this does actually turn out to be mostly doable, though the process of getting there
is not especially pretty. Following Milnor [10] (who is presenting work of Matsumoto), we
embark on a process of computing K2 of a �eld, involving a lot of work with Steinberg group
relations and de�ning some objects called Steinberg symbols.

The outcome of all of this is eventually Matsumoto's theorem, which describes K2 of a
�eld in terms of generators and relations. This presentation is useful enough to compute K2

explicitly in at least one case - for a �nite �eld, all of the generators vanish, so K2 of a �nite
�eld is the trivial group.

5.6.1 Generation of K2 F by symbols

This section mostly follows the presentation in Chapter 9 of Milnor [10]. The important
results are Corollary 5.6.14, Theorem 5.6.17, and Theorem 5.6.18, everything else is technical
and involves machinery/notation which can mostly be discarded after obtaining the results.
Consequently, all of the intermediate proofs (which just involve algebraic manipulation) are
omitted. This is not to say the proofs are easy or short, but they are mostly tedious.

In this section with work with arbitrary associative rings with unity, which we denote
by Λ, not necessarily commutative. We will work in St(n,Λ) with n ≥ 3. Recall that
St(n,Λ) is generated by elements xλij for 1 ≤ i, j ≤ n, i 6= j, λ ∈ Λ. We denote the canonical
homomorphism St(n,Λ)→ GL(n,Λ), xλij 7→ eλij by φ.

De�nition 5.6.1. For a unit u ∈ Λ×, de�ne

wij(u) = xuijx
−u−1

ji xuij hij(u) = wij(u)wij(−1)

These are de�ned in this way so that the images of wij(u) and hij(u) in GL(n,Λ) have the
following somewhat simple forms.

φ
(
wij(u)

)
= euije

−u−1

ji euij =



1
. . .

0 . . . u
...

. . .
...

−u−1 . . . 0
. . .

1


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where unmarked entries along the diagonal are 1, and all other unmarked entries are zero.
The u occurs in the ijth entry, and the −u−1 occurs in the jith entry. Similarly,

φ
(
hij(u)

)
=



1
. . .

u
. . .

−u−1

. . .

1


where the u occurs in the iith entry, and the −u−1 occurs in the jjth entry.

Lemma 5.6.2 (Properties of wij(u), hij(u), Milnor [10] 9.5, 9.6, 9.10). Let u, v ∈ Λ×.

• wij(u)wij(−u) = 1

• hij(1) = 1

• wij(u) = wji(−u−1)

• [h12(u), h13(v)] = h13(uv)h13(u)−1h13(v)−1

• All hij(u) can be written as a product of h1k(v) for various k, v. Furthermore, they
satisfy relations

hij(u)hji(u) = 1 hij(u)−1hjk(u)−1hki(u)−1 = 1

De�nition 5.6.3. W ⊂ St(n,Λ) is the subgroup generated by all wij(u) for 1 ≤ i, j ≤ n,
i 6= j, u ∈ Λ×.

De�nition 5.6.4. A matrix in GL(n,Λ) is a monomial matrix if it can be written as
a product PD where P is a permutation matrix and D is a diagonal matrix. (Recall: A
permutation matrix has one 1 in each row and column, and zeroes elsewhere.)

Lemma 5.6.5 (Milnor [10] 9.1). If Λ is commutative, then the image of φ|W : W → GL(n,Λ)
is exactly the set of all monomial matrices with determinant one.

Lemma 5.6.6 (Milnor [10] 9.2). Let w ∈ W . The conjugation map

St(n,Λ)→ St(n,Λ) x 7→ wxw−1

takes every generator xλij to another generator. (See Corollary 5.6.10 for more precise state-
ment.)

De�nition 5.6.7. Let φ : St(n,Λ)→ GL(n,Λ) be the canonical homomorphism. We de�ne
Cn = ker (φ|W ).

Corollary 5.6.8 (Milnor [10] 9.3). Cn is contained in the center of St(n,Λ).
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Proof. Immediate consequence of Lemma 5.6.6.

De�nition 5.6.9. For a permutation π ∈ Sn and i, j ∈ {1, . . . , n}, we use the shorthand
π(ij) = π(i), π(j). For example, instead of hπ(i),π(j)(u) we write hπ(ij)(u).

Corollary 5.6.10 (Milnor [10] 9.4). Let w ∈ W . We may uniquely express φ(w) as a product
PD, with P a permutation matrix and D = diag(v1, . . . , vn) a diagonal matrix. Let π ∈ Sn
be the permutation corresponding to P . Then

wxλijw
−1 = x

viλv
−1
j

π(ij)

wwij(u)w−1 = x
viuv

−1
j

π(ij)

whij(u)w−1 = hπ(ij)(viuv
−1
j )hπ(ij)(viv

−1
j )−1

De�nition 5.6.11. Let Λ be a commutative ring. The symbol map is

{, } : Λ× × Λ× → K2 Λ {u, v} = [hij(u), hik(v)] = hik(uv)hik(u)−1hik(v)−1

for i 6= j, i 6= k, j 6= k. Note that this does not depend on the choice of indices i, j, k due
to the last two properties of Lemma 5.6.2. Also note that this agrees with the de�nition
of symbols in Chapter 8 of Milnor [10], because φ(h12(u)) = Du and φ(h13(v) = D′v (see
De�nition 5.6.1).

Lemma 5.6.12 (Milnor [10] 9.7). Let Λ be a commutative ring. Then symbol de�ned above is
skew symmetric and bimultiplicative. Furthermore, the image is contained in Cn = ker (φ|W ).

Just for clari�cation, we return to not assuming Λ is commutative.

Lemma 5.6.13 (Milnor [10] 9.8). For any unit u ∈ Λ×, {u,−u} = 1. If u, 1− u ∈ Λ×, then
{u, 1− u} = 1.

Corollary 5.6.14 (Symbols vanish in a �nite �eld, Milnor [10] 9.9). If Λ is a �nite �eld, or
if Λ = Z/pnZ for a prime p with p an odd prime, then {u, v} = 1 for all u, v.

Lemma 5.6.15 (Milnor [10] 9.14 and 9.15). Let T ⊂ St(n,Λ) be the subgroup generated by
all xλij with i < j.

1. Every element of T can be written as a product∏
i<j

x
λ(ij)
ij

with the factors arranged in lexicographic order. (This is a straightforward consequence
of Steinberg relations.)

2. As a consequence of (1), φ maps T isomorphically onto the group of upper triangular
unipotent subgroup of GL(n,Λ). (�Unipotent� means 1's along the diagonal.)

3. If Λ is a division ring, then St(n,Λ) = TWT . (Obviously TWT ⊂ St(n,Λ), so the
content of this assertion is just the reverse inclusion.)
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Recall that Cn = ker (φ|W ) ⊂ St(n,Λ). We can also write this as W ∩ kerφ.

Theorem 5.6.16 (Milnor [10] 9.11). Let Λ be a commutative ring. Then Cn is generated by
symbols {u, v}.

Theorem 5.6.17 (Milnor [10] 9.12). If Λ is a division ring, then kerφ ⊂ W , so kerφ = Cn.
Thus St(n,Λ) is a central extension of E(n,Λ) for n ≥ 3.

Theorem 5.6.18 (K2 F is generated by symbols, Milnor [10] 9.13). If Λ is a �eld, then K2 Λ
is generated by symbols {u, v}. In particular, if Λ is a �nite �eld, then K2 Λ is trivial (by
5.6.14).

Proof. Immediate consequence of Theorems 5.6.17 and 5.6.16.

The next proposition gives some more details on why K2 vanishes for a �nite �eld.

Proposition 5.6.19. Let Fq be the �nite �eld with q elements.

1. If q is odd, there exists u ∈ F×q such that u and 1− u are both not squares.

2. If α is a generator of F×q , then {α, α} is trivial.

3. For any u, v ∈ F×q , {u, v} is trivial.

4. K2(Fq) is trivial.

Proof. (1) Note that F×q is cyclic of order q − 1. Let α be a generator. Since q − 1 is
even, half of the elements of F×q are squares (1, α2, α4, . . . , αq−3) and half are not squares
(α, α3, . . . , αq−2). Consider the bijection

Fq → Fq u 7→ 1− u

This maps 0 to 1 and 1 to 0, so we have a bijection

Fq \ {0, 1} → Fq \ {0, 1} u 7→ 1− u

Suppose there is no u such that u and 1−u are both not squares. Then under this bijection,
all of the q−1

2
non-squares get mapped to squares. But one of the squares in F×q is 1, so there

are only q−1
2
− 1 squares in Fq \ {0, 1}, so this is impossible. Thus there does exist u ∈ F×p

such that u, 1− u are both not squares.
(2) Let α be a generator of F×q . Note that since the symbol is anti-commutative,

{α, α}2 = 1

Also note that
{α, α}q−1 =

{
αq−1, α

}
= {1, α} = 1

If q is even (so q − 1) is odd, this says that {α, α} to an odd and even power are trivial, so
it must be trivial. If q is odd, by (1) we can choose u ∈ F×q such that u, 1− u are both not
squares, so u = αi, 1− u = αj with i, j odd. Then

1 = {u, 1− u} =
{
αi, αj

}
= {α, α}ij
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so once again {α, α} to an odd power (namely ij) is trivial. Since it also squares to 1, it is
trivial.

(3) Let u, v ∈ F×q . Then write them as powers of a generator u = αi, v = αj. Then by
the symbol relations,

{uv} =
{
αi, αj

}
= {α, α}ij

which is trivial by (2).
(4) This is immediate from (3) and the fact that symbols generate K2(K) for any �eld

K.

5.6.2 Matsumoto's theorem

Finally we give a precise statement of Matsumoto's theorem, which gives a presentation of
K2 F for a �eld F . We do not prove it here.

Theorem 5.6.20 (Matsumoto's theorem). Let F be a �eld. The abelian group K2 F has a
presentation with generators {x, y} for x, y ∈ F× and relations

{x, 1− x} = 1 for x 6= 0, 1

{x1x2, y} = {x1, y} {x2, y}
{x, y1y2} = {x, y1} {x, y2}

Remark 5.6.21 (Milnor [10] 11.2). By 5.6.16, the kernel Cn of St(n, F ) → SL(n, F ) is
generated by the symbols {u, v}, which satisfy the relations of 5.6.20. Thus by 5.6.20, there
is a canonical surjection K2 F → Cn, de�ned by sending a generator {u, v} to itself.

Since K2 Λ is the direct limit over n of the Cn, the universal property of the direct limit
gives a map Cn → K2 Λ, and by uniqueness considerations, these maps must be inverses.
Thus C3, C4, C5, . . . are all canonically isomorphic to each other and to the direct limit K2 Λ.

5.6.3 Steinberg symbols

Since the symbol map {, } was so crucial in describing K2 of a �eld, we make some abstract
de�nitions generalizing a map with the same properties, and some properties such maps
always have.

De�nition 5.6.22. Let F be a �eld and A an abelian group, written multiplicatively. A
Steinberg symbol on F with values in A is a bimultiplicative map c : F× × F× → A
satisfying c(x, 1− x) = 1.

Corollary 5.6.23 (Milnor [10] 11.3). If c is a Steinberg symbol on F with values in A, there
is a unique homomorphism K2 F → A so that {x, y} 7→ c(x, y) for all x, y ∈ F×.

Proof. This is just the case n = 2 of Remark 5.7.7.
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Lemma 5.6.24 (Properties of Steinberg symbols). Let c : F× × F× → A be a Steinberg
symbol.

c(xy, z) = c(x, z)c(y, z) bimultiplicative, by definition

c(x, yz) = c(x, y)c(x, z) bimultiplicative by definition

c(x, 1− x) = 1 by definition

c(x, 1) = c(1, x) = 1 consequence of bimultiplicative

c
(
x, y−1

)
= c(x, y)−1 = c

(
x−1, y

)
consequence of bimultiplicative

c
(
x−1, y−1

)
= c(x, y) consequence of bimultiplicative

c(x,−x) = 1 see Milnor[10] page 95

c(x, y) = c(y, x)−1 see Milnor[10] page 95

x+ y = 1 =⇒ c(x, y) = 1 because c(x, 1− x) = 1

c(x,−1)2 = 1 consequence of bimultiplicative

5.6.4 Tate's computation of K2Q
At this point, we have Matsumoto's presentation of K2(F ), and we can use it to explicitly
determine K2(F ) in the case where F is �nite. This presentation is also su�cient to explicitly
describe K2(Q), though it takes more work, and we omit many of the details.

De�nition 5.6.25. A discrete valuation v on a �eld K is a group homomorphism v :
K× → Z, satisfying

v(x+ y) ≥ min
(
v(x), v(y)

)
It is often convenient to extend v to K → Z ∪ {∞} by setting v(0) = ∞. The associated
discrete valuation ring is

OK =
{
x ∈ K× : v(x) ≥ 0

}
∪ {0} = {x ∈ K : v(x) ≥ 0}

which has unique maximal ideal

m =
{
x ∈ K× : v(x) > 0

}
∪ {0} = {x ∈ K : v(x) > 0}

The quotient OK/m is the residue class �eld of K.

De�nition 5.6.26. Let v be a discrete valuation on a �eld K, with residue class �eld
k = OK/m. The associated tame symbol is dv : K× ×K× → k× is

dv(x, y) = (−1)v(x)v(y)x
v(y)

yv(x)

Note that dv is a Steinberg symbol (Milnor [10] 11.5).

De�nition 5.6.27. For a prime p ∈ Z with p ≥ 3, let vp be the p-adic valuation on Q.
To economize on notation, we denote dvp(x, y) by (x, y)p. Note that (x, y)p takes values in
(Z/pZ)× (for p ≥ 3).
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In the case p = 2, we de�ne (x, y)2 as follows. Any nonzero rational can be written
uniquely in the form (−1)i2j5ku where k = 0, 1 and u is a quotient of integers congruent to
1 modulo 8. Then de�ne(

(−1)i2j5ku, (−1)I2J5Ku′
)

2
= (−1)iI+jK+kJ

This is in fact a well de�ned Steinberg symbol. Note that (x, y)2 takes values in {±1}.

De�nition 5.6.28. We denote the target of (x, y)p by Ap, so we have A2 = {±1}, and for
p ≥ 3, Ap = (Z/pZ)×.

Theorem 5.6.29 (Milnor [10] 11.6, due to Tate). The map

K2Q→ A2 ⊕ A3 ⊕ A5 ⊕ . . . {x, y} 7→ (x, y)2 ⊕ (x, y)3 ⊕ (x, y)5 ⊕ . . .

is an isomorphism of abelian groups.

For an alternate description of the previous theorem, see Rosenberg Theorem 4.4.9 [13].

5.7 Milnor K-theory

In this section we discuss Milnor's attempt to de�ne higherK-groups for �elds by generalizing
the presentation given by Matsumoto in the calculation ofK2F . The higher MilnorK-groups
are NOT isomorphic to the higher K-groups de�ned by Quillen, but much simpler to de�ne
and work with. Also, there is a homomorphism from Milnor's Kn F to Quillen's Kn F , which
is an isomorphism for n = 0, 1, 2. 3

The presentation follows section 1.2 of Fesenko https://www.maths.nottingham.ac.

uk/plp/pmzibf/book/ch9n.pdf.

De�nition 5.7.1. Let F be a �eld, and for n ∈ Z≥1 consider the n-fold tensor product

T n = F× ⊗Z · · · ⊗Z F×

We write T n multiplicatively (even though tensor products are typically written additively),
so that

(α1 ⊗ · · · ⊗ αi ⊗ · · · ⊗ αn)(α1 ⊗ · · · ⊗ βi ⊗ · · · ⊗ αn) = α1 ⊗ · · · ⊗ αiβi ⊗ · · · ⊗ αn
4 Let In ⊂ T n be the subgroup generated by elements

α1 ⊗ · · · ⊗ αn

with αi + αj = 1 for some i 6= j. Then nth Milnor K-group of F is the quotient
KM
n (F ) = T n/In. We also set KM

0 F = Z. (This makes sense since K0 F ∼= Z, see example
5.1.11).

3https://en.wikipedia.org/wiki/Milnor_K-theory
4If we write Tn additively instead, this relation looks like

(α1 ⊗ · · · ⊗ αi ⊗ · · · ⊗ αn) + (α1 ⊗ · · · ⊗ βi ⊗ · · · ⊗ αn) = α1 ⊗ · · · ⊗ (αi + βi)⊗ · · · ⊗ αn
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De�nition 5.7.2. The image of α1⊗· · ·⊗αn ∈ KM
n F is a symbol and written {α1, . . . , αn}.

By de�nition, the symbols generated KM
n F , which is the generalization of our known fact

that symbols {x, y} generate K2 F (Theorem 5.6.18). By de�nition, the symbols satisfy the
relations 5

{α1, . . . , αn} = 1 if αi + αj = 1 for some i 6= j

{. . . , αβ, . . .} = {. . . , α, . . .} {. . . , β, . . .}

Remark 5.7.3. By Matsumoto's theorem, KM
2 F ∼= K2 F , since Matsumoto showed that

K2 F is generated by elements {x, y} for x, y ∈ F× with the same relations. Also note that
KM

1 F ∼= K1 F , since in this case T n = F×, In = 0 so KM
1 F ∼= F×, and by example 5.2.7,

K1 F ∼= F× also.

Lemma 5.7.4. Symbols satsify the relations

{αm1 , α2, . . . , αn} = {α1, . . . , αn}m for all m ∈ Z
{α1, . . . , αn} = 1 if αi = 1 for some i

Proof. The �rst is an immediate consequence of multiplicativity. The second is a consequence
of the �rst, as

{. . . , 1, . . .} =
{
. . . , xx−1, . . . ,

}
= {. . . , x, . . .}

{
. . . , x−1, . . .

}
= {. . . , x, . . .} {. . . , x, . . .}−1 = 1

De�nition 5.7.5. For n,m ∈ Z≥1, the usual �concatenation� map

T n ⊗Z Tm → T n+m (α1 ⊗ · · ·αn)⊗ (αn+1 ⊗ · · · ⊗ αm) 7→ α1 ⊗ · · · ⊗ αm

induces a map 6

KM
n F ⊗Z KM

m F → KM
n+m F {α1, · · · , αn} ⊗ {αn+1, · · · , αm} 7→ {α1, · · · , αm}

Also in the case n = 0 or m = 0 we have the usual Z-actions on KM
n F or KM

m F respectively,
so taking this all together, we have made a graded ring

KM F =
⊕
n≥0

KM
n F

called the Milnor ring of the �eld F .

5 If we write these relations additively, they look like

{α1, . . . , αn} = 0 if αi + αj = 1 for some i 6= j

{. . . , αβ, . . . , } = {. . . , α, . . .}+ {. . . , β, . . .}

6There is some checking here that various things satisfy needed relations, but this is not especially
interesting to work out.
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De�nition 5.7.6. Let F be a �eld and A an abelian group, written multiplicatively. A
generalized Steinberg symbol on F , also called a Steinberg cocycle or n-symbolic
map is a map

c :
n∏
i=1

F× → A

such that

c(. . . , xy, . . .) = c(. . . , x, . . .) · c(. . . , y, . . .)
c(x1, . . . , xn) = 1 if xi + xj = 1 for some i 6= j

The �rst property is called (multi)-multiplicativity and the second property is called
the Steinberg property. Alternately, we may bake in the multiplicativity property by
requiring that c be a map

c : (F×)⊗n → A

in which case c just needs to satisfy the Steinberg property. We will also call such a map an
n-symbolic map.

Remark 5.7.7. Let c be an n-symbolic map on a �eld F . By multiplicativity, c induces a
map on T n =

⊗n
i=1 F

×, and by the Steinberg property, it vanishes on In, so c induces

KM
n F → A {x1, . . . , xn} 7→ c(x1, . . . , xn)

Since the symbols generate KM
n F , this extends uniquely to a map on all of KM

n F .

5.7.1 K2 of an algebraically closed �eld

We continue to follow Fesenko's notes https://www.maths.nottingham.ac.uk/plp/pmzibf/
book/ch9n.pdf to show that if F is an algebraically closed �eld, then K2 F is divisible.

De�nition 5.7.8. Let A be an abelian group written additively, and let n ∈ Z, and consider
the multiplication-by-n-map n : A → A, a 7→ na. If A is written multiplicatively, it is more
appropriate to call this the nth-power-map and write it n : A→ A, a 7→ an.

A is n-divisible if n : A → A is surjective. A is uniquely n-divisible if n : A → A is
an isomorphism. A is divisible if it is n-divisible for all n ∈ Z≥1. A is uniquely divisible
if it is uniquely n-divisible for all n ∈ Z≥1.

Proposition 5.7.9. Let F be a �eld and m ∈ Z≥1 such that F× = F×m, and also suppose
that either charF = m or the group of mth roots of unity µm ⊂ F sep is contained in F . Then
KM
n F is uniquely m-divisible.

Proof. De�ne

fm :
n∏
i=1

F× → KM
n F (α1, . . . , αn) 7→ {β1, α2, . . . , αn}
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where β1 ∈ F× satis�es βm1 = α1. To verify that this is well de�ned, suppose γ1 ∈ F× is also
an mth root of α1, γ

m
1 = α1. Then(

β1γ
−1
1

)m
= βm1 γ

−m
1 = α1α

−1
1 = 1

so β1γ
−1
1 = ζ is an mth root of unity. Now choose β2 ∈ F× so that α2 = βm2 . Then using

Lemma 5.7.4 a few times,

{β1, α2, . . . , αn} = {γ1ζ, α2, . . . , αn}
= {γ1, α2, . . . , αn} {ζ, α2, . . . , αn}
= {γ1, α2, . . . , αn} {ζ, βm2 , . . . , αn}
= {γ1, α2, . . . , αn} {ζ, β2, . . . , αn}m

= {γ1, α2, . . . , αn} {ζm = 1, β2, . . . , αn}
= {γ1, α2, . . . , αn}

Thus fm is well de�ned. Now we claim that fm is an n-symbolic map. It is clear that fm is
multiplicative with respect to the arguments α2, . . . , αn. It is also multiplicative with respect
to the 1st argument, since if βm1 = α1, (β

′
1)m = α′1, then (β1β

′
1)m = α1α

′
1 and so

fm(α1α
′
1, α2, . . . , αn) = {β1β

′
1, . . . , αn}

= {β1, . . . , αn} {β′1, . . . , αn}
= fm(α1, . . . , αn)fm(α′1, . . . , αn)

If αi + αj = 1 for some i 6= j, and i, j 6= 1, then it is clear from the de�nition of f that
fm(α1, . . . , αn) = 1. If α1 + αj = 1 for some j 6= 1, choose β1 so that βm1 = α1, and then
we need to consider the cases (1) charF = m and (2) µm ⊂ F separately. In case (1) where
charF = m, we get

αj = 1− α1 = 1− βm1 = (1− β1)m

hence

fm(α1, . . . , αj, . . .) = {β1, . . . , (1− β1)m, . . .} = {β1, . . . , 1− β1, . . .}m = 1

since β1 + (1− β1) = 1. So in case (1), fm has the Steinberg property. In case (2), let ζ ∈ F
be a primitive mth root of unity. Then

αj = 1− α1 = 1− βm1 =
m∏
k=1

(1− ζkβ1)

Note that

1 =
{
ζkβ1, . . . , 1− ζkβ1, . . .

}
=
{
ζk, . . . , 1− ζkβ1, . . .

}{
β1, . . . , 1− ζkβ1, . . .

}
(5.7.1)

=⇒
{
β1, . . . , 1− ζkβ1, . . .

}
=
{
ζk, . . . , 1− ζkβ1, . . .

}−1
(5.7.2)
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Then using equation 5.7.2

fm(α1, . . . , αj, . . .) =

{
β1, . . . ,

∏
k

(1− ζkβ1), . . .

}
=
∏
k

{
β1, . . . , 1− ζkβ1, . . .

}
=
∏
k

{
ζk, . . . , 1− ζkβ1, . . .

}−1

Now choose δk so that δmk = 1− ζkβ1. Then we continue our equalities.

fm(α1, . . . , αj, . . .) =
∏
k

{
ζk, . . . , δmk , . . .

}−1
=
∏
k

{
ζk, . . . , δk, . . . ,

}−m
=
∏
k

{
(ζk)m, . . . , δk, . . .

}−1
=
∏
k

{1, . . . , δk, . . . , }−1 =
∏
k

1 = 1

So in case (2), fm has the Steinberg property. Hence in either case, fm is an n-symbolic
map, and induces the group homomorphism

f̃m : KM
n F → KM

n F {α1, . . . , αn} 7→ {β1, . . . , αn}

where βm1 = α1, which is inverse to m-power-map, since

(f̃m ◦m) {α1, . . . , αn} = f̃m {α1, . . . , αn}m = f̃m {αm1 , . . . , αn} = {α1, . . . , αn}

Thus KM
n F is uniquely m-divisible.

Corollary 5.7.10. Let F be an algebraically closed �eld. Then KM
n F is uniquely divisible.

Proof. Since F is algebraically closed, it contains all mth roots of unity for all m ≥ 1. Hence
by Proposition 5.7.9, is uniquely m-divisible for all m ≥ 1, so by de�nition of uniquely
divisible 5.7.8, it is uniquely divisible.

Having done the above, we now give a slightly di�erent method of showing that KM
2 of an

algebraically closed �eld is divisible. We give a laundry list of lemmas which build up to
this. In the end, the proof ends up relying on basically the same trick as the Fesenko proof,
but it's still interesting. These ideas are from exercise 7.1 of Gille & Szamuely [4].

Proposition 5.7.11. Let K be an algebraically closed �eld. Then KM
2 (K) is uniquely divis-

ible.

Proof. Let n ∈ Z, n 6= 0, and consider the following diagram with exact rows.

0 R K× ⊗Z K× KM
2 (K) 0

0 R K× ⊗Z K× KM
2 (K) 0

n

{,}

n n

{,}
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where R is the submodule generated by elements u⊗(1−u). By Proposition 1.4.14, K×⊗K×

is uniquely divisible, so the middle map is an isomorphism. By the snake lemma, there is an
exact sequence

kern→ kern→ kern→ cokern→ cokern→ cokern

which since the middle map is an isomorphism becomes

0→ kern
∼=−→ cokern→ 0

Since KM
2 (K) is a quotient of a divisible group, it is divisible, so it su�ces to prove that it

is torsion free, which is to say, that the kernel of n is trivial. By our isomorphism, this is
equivalent to showing that n : R → R has trivial cokernel, namely, is surjective. Since R is
generated by elements u ⊗ (1 − u) for u ∈ K×, it su�ces to show that u1/n ⊗ (1 − u) ∈ R,
or equivalently by exactness, that

{
u1/n, 1− u

}
= 1 in KM

2 (K).
This is where we are essentially back to the argument of Fesenko. Let β ∈ K×, βn = u,

and let ζ ∈ K× be a primitive nth root of unity. Then

1− u =
n∏
i=1

(1− ζ iβ)

Now

{β, 1− u} =
{
β,
∏

(1− ζ iβ)
}

=
n∏{

β, 1− ζ iβ
}

=
∏{

ζ i, 1− ζ iβ
}−1

Now choose αi ∈ K× so that αni = 1− ζ iβ. Then

1 =
∏{

ζ i, αni
}−1

=
∏{

ζ i, αi
}−n

=
∏{

ζ in, αi
}−1

=
∏
{1, αi} = 1

5.8 Merkurjev-Suslin theorem

The Merkurjev-Suslin theorem is the bow that ties together almost everything developed in
these notes. Depending on how the statement is formulated, it involves group cohomology,
Brauer groups, algebraic K-theory (in particular, K2 which is the same as KM

2 ). It relates
the languages of central simple algebras (in particular, cyclic algebras) with the language
of cup products from group cohomology, and makes use of the isomorphisms of Kummer
theory.

Though it is not the most general version of Merkurjev-Suslin, the easiest way to con-
ceptualize the theorem is that it tells you rather explicitly about a set of generators for the
Brauer group of a �eld. It says that the m-torsion subgroup of Br(K) is generated by �cyclic
algebras,� whatever those are. Since Br(K) is a torsion group, it is the union of all m-torsion
subgroups, so this gives a complete set of generators for Br(K).
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In a more general version, Merkurjev-Suslin gives an isomorphism between the m-torsion
of Br(K), and the quotient KM

2 (K)/mKM
2 , and tells you how elements correspond under

this isomorphism. A symbol {a, b} in KM
2 corresponds to a cyclic algebra (a, b)ω in Br(K).

Before we can state the Merkurjev-Suslin theorem, we need to describe the Galois symbol
map. In its most general statement (in these notes), the Mekurjev-Suslin theorem says that
the Galois symbol map induces a particular isomorphism. De�ning the symbol map involves
Kummer theory, cup products, and some lemmas about KM

2 .

5.8.1 Statement of Merkurjev-Suslin theorem in terms of cyclic al-
gebras

In this section, we assume K is a �eld containing a primitive mth root of unity. The results
still hold in the general case, but they are simpler to state in this case, and the description
of cyclic algebras is much simpler in this case.

De�nition 5.8.1. LetK be a �eld containing a primitivemth root of unity ω. For a, b ∈ K×,
the cyclic algebra (a, b)ω is given by the presentation

〈x, y | xm = a, ym = b, xy = ωyx〉

Note that dimK(a, b)ω = m2, with a K-basis given by products xiyj for 0 ≤ i, j ≤ m− 1.

Theorem 5.8.2 (Merkerjev-Suslin, Theorem 2.5.7 on page 41 of Gille & Szamuely [4]). Let
K be a �eld containing a primitive mth root of unity ω. The a central simple K-algebra A
whose class has order dividing m in Br(K) is Brauer equivalent to a tensor product of cyclic
algebras.

[A] = (a1, b1)ω ⊗K · · · ⊗K (ai, bi)ω

That is, the m-torsion subgroup m Br(K) ⊂ Br(K) is generated by cyclic algebras.

Remark 5.8.3. Every �eld has a primitive square root of unity (namely −1), so the case
m = 2 says that the 2-torsion of Br(K) for any �eld K is generated by quaternion algebras.
(This is pointed out in Theorem 1.5.8 of Gille & Szamuely [4].)

5.8.2 Construction of Galois symbol

We outline the process of constructing the Galois symbol map hnK,m : KM
n (K)→ Hn(GK , µ

⊗n
m ,

assuming charK is coprime to m. This will allow us to make a state a more general version
of Merkurjev-Suslin.

Remark 5.8.4. Let K be a �eld and let m be a positive integer such that m is coprime
to the characteristic of K, so that the group of mth roots of unity µm lives in a separable
closure Ksep. Let GK = Gal(Ksep/K) be the absolute Galois group of K. Recall from
Kummer theory that in this situation, there is an isomorphism

K×/K×m ∼= H1(GK , µm)
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We may also view this as a surjection K× → H1(GK , µm) with kernel K×m.

0→ K×m ↪→ K× → H1(GK , µm)→ 0

The isomorphism may be described explicitly in terms of elements as follows. For a ∈ K×,
the class of a ∈ K×/K×m corresponds to the Kummer cocycle χa ∈ H1(GK , µm), where

χa : GK → µm σ 7→ σ(α)

α

where α is any mth root of a. For details behind this, such as why χa is well de�ned, or why
it is a cocycle, see Proposition 4.3.6 of Gille & Szamuley [4] or Proposition 2.5.8 of Shari�
[15].

De�nition 5.8.5. Let R be a ring and M be an R-module. We use the notation M⊗n for
the n-fold tensor product M ⊗R · · · ⊗R M with n factors. (In what follows, we will always
have R = Z, but this notation makes sense more generally.)

De�nition 5.8.6. Let K,m,Ksep, µm, GK be as above. For n ∈ Z≥2, Consider the cup
product (all tensor products over Z)

H1(GK , µm)⊗n
∪−→ Hn(GK , µ

⊗n
m )

Combining this with the surjections K× → H1(GK , µm), we obtain a homomorphism

∂n : (K×)⊗n → Hn(GK , µ
⊗n
m )

Remark 5.8.7. Recall the general fact that for two positive integers a, b,

Z/aZ⊗Z Z/bZ ∼= Z/ gcd(a, b)Z

Iterating this, we obtain

µ⊗nm = µm ⊗ · · · ⊗ µm ∼= Z/mZ⊗ · · · ⊗ Z/mZ ∼= Z/mZ ∼= µm

So for the target of ∂n we have Hn(GK , µ
⊗n
m ) ∼= Hn(GK , µm). Despite this, we still often

write the tensor product.

Proposition 5.8.8. Let ∂n be the map de�ned above. If a1, . . . , an ∈ K× such that ai+aj = 1
for some pair i 6= j, then ∂n(a1 ⊗ · · · ⊗ an) = 0.

Proof. Lemma 4.6.2 and Proposition 4.6.1 in Gille & Szamuley [4].

De�nition 5.8.9. Let K, ∂n, etc. be as above. Recall that the nth Milnor K-group KM
n (K)

is the quotient of (K×)⊗n by the ideal generated by elements a1⊗· · ·⊗an for which some pair
i, j we have ai+aj = 1. By de�nition, ∂n vanishes on this ideal, and induces a homomorphism

hnK,m : KM
n (K)→ Hn(GK , µ

⊗n
m )

0 ker (K×)⊗n KM
n (K) 0

H2(GK , µ
⊗n
m )

∂n

{...}

hnK,m

The class of a1 ⊗ · · · ⊗ an ∈ (K×)⊗n in the quotient KM
n (K) is denoted by {a1, . . . , an} and

is called a symbol. The map hnK,m is the Galois symbol map.
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5.8.3 Statement of Merkurjev-Suslin theorem in terms of Galois
symbol

Now we state the Merkurjev-Suslin theorem (without proof) in general for any �eld K, in
terms of the Galois symbol h2

K,m : KM
2 (K)→ H2(GK , µ

⊗2
m ).

Theorem 5.8.10 (Merkurjev-Suslin theorem, Theorem 4.6.6 on page 132 of Gille & Sza-
muely [4]). Let K be a �eld and m a positive integer which is invertible in K. For n = 2,
the Galois symbol map is a surjection

h2
K,m : KM

2 (K)� H2(GK , µ
⊗2
m )

with kernel mK2(M), so it induces an isomorphism

KM
2 (K)/m ∼= H2(GK , µ

⊗2
m )

Remark 5.8.11. The previous theorem is a special case of the much more general Voevodsky-
Rost theorem (published 2000), formerly known as the Bloch-Kato conjecture. It says that
hnK,m is an isomorphism for all n ≥ 0, not just n = 2. Note that the case n = 0 is trivial,
and n = 1 is just the isomorphism

K1(K)/m = K×/K×m ∼= H1(GK , µm)

of Kummer theory. The case n = 2 (above) was proven by Merkurjev-Suslin in 1982.

Remark 5.8.12. Let K be a �eld and let m be a positive integer which is coprime to the
characteristic of K. Let GK = Gal(Ksep/K) be the absolute Galois group. From remark
5.8.7, we have an isomorphism

H2(GK , µ
⊗2
m ) ∼= H2(GK , µm)

From Kummer theory, we have an isomorphism

H2(GK , µm) ∼= m Br(K)

Combining these with the isomorphism of the Merkurjev-Suslin theorem, we obtain

KM
2 (K)/m ∼= m Br(K)

Remark 5.8.13. Here is a large diagram attempting to summarize the various objects and
maps involved in the above statements. The map δ is one of the isomorphisms from Kummer
theory, coming from the connecting homomorphism of a LES.

The vertical sequence involving KM
2 (K) is exact by de�nition of KM

2 (K). The �rst
horizontal row is exact by de�nition of kernel. The inclusion of 〈u ⊗ (1 − u)〉 into ker ∂2 is
the content of Proposition 5.8.8. Exactness of the second horizontal row is the content of
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the Merkurjev-Suslin theorem.

0

〈u⊗ (1− u) | u ∈ K×〉

0 ker ∂2 K× ⊗K× H1(GK , µm)⊗H1(GK , µm)

0 mKM
2 (K) KM

2 (K) H2(GK , µ
⊗2
m ) 0

0 H2(GK , µm)

m Br(K)

∂2

∪
h2K,m

∼=

∼= Kummer theory

5.8.4 Connection between the two versions

Since we stated two theorems which are not immediately obviously the same thing and used
the same name for them, we should justify why these are reasonably thought of as �the same�
theorem. The reason is that the �rst version, in terms of cyclic algebras, is a corollary of the
second version in terms of the Galois symbol, once we set up a few lemmas.

De�nition 5.8.14. Let L/K be a cyclic Galois extension of orderm, and �x an isomorphism
χ : Gal(L/K)→ Z/mZ. Let b ∈ K×, and let σ = χ−1(1). The cyclic algebra (χ, b) is the
algebra with the following presentation. It is generated as an L-algebra by L and an element
y, satisfying

ym = b σ(λ) = y−1λy, ∀λ ∈ L

Remark 5.8.15. IfK contains a primitivemth root of unity ω, then there is an isomorphism
(χ, b) ∼= (a, b)ω

7 which justi�es the double use of the term �cyclic algebra.� See Corollary
2.5.5 of Gille & Szamuely [4].

Proposition 5.8.16. Let K be a �eld, �x separable closureKsep, and let GK = Gal(Ksep/K).
Let L/K be a cyclic Galois extension of degree m contained in Ksep, and let G = Gal(L/K).
Fix an isomorphism

χ : G
∼=−→ Z/mZ

Then de�ne
χ̃ : GK → Z/mZ σ 7→ χ(σ|L)

Let δ : H1(GK ,Z/mZ)→ H2(GK ,Z) be the coboundary map of the LES associated to

0→ Z m−→ Z→ Z/mZ→ 0

7There are details about what a anc χ should be to make this work, but we omit these.
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Then consider the cup product map

H2(GK ,Z)⊗H0(GK , K
sep×)

∪−→ H2(GK , K
sep×)

Fix b ∈ K×. Under the isomorphism

H2(GK , K
sep×) ∼= Br(K)

the element δ(χ̃) ∪ b correpends to the Brauer class of the cyclic algebra (χ, b).

Proof. Proposition 4.7.3 of Gille & Szamuley [4].

Proposition 5.8.17. Let K be a �eld and let m be a positive integer which is coprime to the
characteristic of K, and suppose K contains a primitive mth root of unity ω. Let a, b ∈ K×.
Under the isomorphism

KM
2 (K)/m ∼= m Br(K)

of remark 5.8.12, the element {a, b} corresponds to the Brauer class of the cyclic algebra
(a, b)ω. That is, h

n
K,m {a, b} is Brauer equivalent to (a, b)ω.

Proof. Proposition 4.7.1 of Gille & Szamuely [4].

Remark 5.8.18. The tensor product K× ⊗ K× is generated by simple tensors a ⊗ b, so
the quotient KM

2 (K) is generated by the images of these, that is, KM
2 (K) is generated by

symbols {a, b}. Thus the previous proposition says that m Br(K) is generated by cyclic
algebras (a, b)ω. That is to say, the Galois symbol version of Merkurjev-Suslin 5.8.10 implies
the cyclic algebra version of Merkurjev-Suslin 5.8.2.
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Chapter 6

Local �elds

This whole chapter is more of an appendix, and primarily serves as a reference for sections
4.6.7 and 4.6.8. Despite this, it is a very incomplete reference.

6.1 Valuations and absolute values

The primordial example of an absolute value is the usual absolute value on R or Q, which
has the well known extension to complex norm on C. Unfortunately, we will largely ignore
this absolute value, because it is not as �algebraic� as the absolute values we consider.

De�nition 6.1.1. Let K be a �eld. An absolute value on K is a function | · | : K → R≥0

which satis�es
|x| = 0 ⇐⇒ x = 0

and is a group homomorphism K× → R≥0, that is, for x, y ∈ K,

|xy| = |x||y|

and satis�es the triangle inequality

|x+ y| ≤ |x|+ |y|

If the absolute value also satis�es the stronger nonarchimedean triangle inequality

|x+ y| ≤ max(|x|, |y|)

then we call the absolute value nonarchimedean. Note that the usual absolute value on R
is not nonarchimedean (so we call it archimedean).

Example 6.1.2. Let p ∈ Z be a prime. The p-adic absolute value on Q is given by

|x|p = |pnx′|p = p−n

where x′ is uniquely determined by factoring out all powers of p from x. Another way to
describe this valuation is by

|q|p =

{
1 q 6= p
1
p

q = p
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where q in Z is a prime or −1. Using the multiplicative property, this determines | · |p on all
of Q. Note that the p-adic absolute value is nonarchimedean (requires some basic number
theoretic arguments to prove).

Remark 6.1.3. Let K be a �eld with an absolute value | · |. This induces a distance function
on K via

d(x, y) = |x− y|

which gives K a metric topology. Whenever a �eld K has an absolute value, we think of it
having the induced metric topology.

Theorem 6.1.4 (Gouvea [5] 2.2.2). Let K be a �eld with absolute value | · | : K → R≥0, and
let

A = {1n : n ∈ Z} ⊂ K

be the image of Z in K. The absolute value is nonarchimedean if and only |a| ≤ 1 for all
a ∈ A.

Proof. If the absolute value is nonarchimedean, then for a ∈ A we have

|a| = |1 + · · ·+ 1| ≤ max(|1|, . . . , |1|) = 1

which proves the forward direction. For the converse, let x, y ∈ K; we need to show |x+y| ≤
max(|x|, |y|). If y = 0, this is obvious since |0| = 0. If y 6= 0, then this is equivalent to∣∣∣∣xy + 1

∣∣∣∣ ≤ max

(∣∣∣∣xy
∣∣∣∣ , 1)

Thus if the inequality holds for y = 1, it holds in general. That is, we just need to show
|x+ 1| ≤ max(|x|, 1). Let m ∈ Z≥1. Then

|x+ 1|m =

∣∣∣∣∣
m∑
k=0

(
m

k

)
xk

∣∣∣∣∣ ≤
m∑
k=0

∣∣∣∣(mk
)∣∣∣∣ |x|k ≤ m∑

k=0

|x|k ≤ (m+ 1) max(1, |x|m)

Taking mth roots, we obtain

|x+ 1| ≤ (m+ 1)1/m max(1, |x|)

for every m ∈ Z≥1. Since
lim
m→∞

(m+ 1)1/m = 1

the previous inequality holding for all m ∈ Z≥1 implies

|x+ 1| ≤ max(1, |x|)

which is what we needed to show.

Theorem 6.1.5 (Ostrowski's theorem). Up to equivalence, the only nontrivial absolute val-
ues on Q are | · |∞ and | · |p for primes p ∈ Z. (Conversely, these are all distinct for p1 6= p2.)
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Proof. This is not a trivial result, but also does not involve heavy mathematical machinery.
See Milne [8] chapter 7 for a proof.

Proposition 6.1.6 (Exercises 68, 69 of Gouvea [5]). .

1. Let p, q be distinct primes. The p-adic and q-adic absolute values are not equivalent.

2. An archimedean absolute value on a �eld K is not equvialent to a nonarchimedean
absolute value. In particular, | · |p is not equivalent to | · |∞ for any p.

Proof. (1) They are equivalent if and only if there exists c ∈ R>0 such that |x|cp = |x|cq for
all x ∈ Q. For any c ∈ R>0,

|p|cq = 1 |q|cq =
1

qc
6= 1

(2) If an archimedean absolute value | · |a is equivalent to a nonarchimedean absolute value
| · |b, then |x|a = |x|cb for some c ∈ R>0, so

|x+ y|a = |x+ y|cb ≤ max (|x|b, |y|b)c = max (|x|ca, |y|cb) = max(|x|a, |y|a)

so | · |a has the nonarchimedean triangle inequality, which is impossible by de�nition.

An alternative way to look at nonarchimedean absolute values is by looking at valuations.
Later we'll show that these are entirely equivalent perspectives.

De�nition 6.1.7. Let K be a �eld. A valuation on K is a group homomorphism v : K× →
R, satisfying

v(x+ y) ≥ min(v(x), v(y))

for all x, y ∈ K×. It is sometimes convenient to extend a valuation v to all of K by setting
v(0) =∞, but this shouldn't be taken too literally.

A valuation v is discrete if the image v(K×) is a discrete subgroup of R. Note that a
discrete subgroup of (R,+) is necessarily isomorphic to Z, so often we normalize a discrete
valuation so that the image is precisely Z, which we can always do just by introducing a
scaling factor.

Lemma 6.1.8. Let K be a �eld and v : K× → Z a discrete valuation. Then

1. If a ∈ K× is a root of unity, then v(x) = 0.

2. If a, b ∈ K× and v(b) < v(a), then v(a+ b) = v(b).

3. If a1, . . . , an ∈ K× satsify a1 + · · ·+an = 0, then the minimal value of v(ai) is attained
for at least two indices.

Proof. (1) If an = 1 then nv(a) = v(an) = v(1) = 0 so v(a) = 0.
(2) Let a, b be such that v(b) < v(a). Then

v(a+ b) ≥ min(v(a), v(b)) = v(b)
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and

v(b) = v(b+ a− a) ≥ min(v(a+ b), v(−a)) = min(v(a+ b), v(a))

If this min was v(a) we would have a contradiction since v(b) < v(a), so v(b) ≥ v(a + b).
Since we have inequality both ways, v(a+ b) = v(b).
(3) Suppose a1 + · · ·+ an = 0 and choose i so that v(ai) is minimal. Then solve for ai.

ai = −(a1 + · · ·+ âi + · · ·+ an)

Taking valuations,

v(ai) = v(−1) + v(a1 + · · ·+ âi + · · ·+ an) = v(a1 + · · ·+ âi + · · ·+ an) ≥ min
j 6=i

v(aj)

Thus there is another value j such that v(aj) ≤ v(ai). But by choice of i, v(ai) ≤ v(aj), so
they are equal.

6.1.1 Correspondence between valuations and absolute values

Proposition 6.1.9. Let K be a �eld and �x b ∈ K×. There is a bijective correspondence

{discrete valuations on K} ←→ {nonarchimedean discrete absolute values on K}
v 7−→ |x| = b−v(x)

Also, this correspondence preserves the usual equivalence on both sides.

Proof. Omitted.

Remark 6.1.10. We spell out the correspondence above in more detail with the following
table.

Nonarchimedean discrete absolute value Discrete valuation
| · | : K× → R>0 v : K× → Z
| · | : K → R≥0 v : K → Z ∪ {∞}
|x| = 0 ⇐⇒ x = 0 v(0) =∞ ⇐⇒ x = 0
|xy| = |x||y| v(xy) = v(x) + v(y)
|x+ y| ≤ max(|x|, |y|) v(x+ y) ≥ min(v(x), v(y))
|x| = b−v(x) v
| · | v(x) = − logb(x) where |K×| = {bn : n ∈ Z}

In practice, there is often a usual choice for b for a given valuation. For example, the p-adic
absolute value and p-adic valuation on Q are traditionally related by the choice of b = p.
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6.1.2 Completions

De�nition 6.1.11. Let K be a �eld with an absolute value | · |. A Cauchy sequence with
respect to the absolute value is a sequence (an) with an ∈ K such that for every ε > 0, there
exists N > 0 such that for i, j ≥ N ,

|ai − aj| < ε

This generalizes the usual notion of Cauchy sequences in Q or R, just by replacing the usual
absolute value with any absolute value function.

De�nition 6.1.12. Let K be a �eld with an absolute value | · |. K is complete with respect
to | · | if every Cauchy sequence in K has a limit in K.

Lemma 6.1.13 (Gouvea [5] 3.2.3). The �eld Q is not complete with respect to any of its
nontrivial absolute values.

Theorem 6.1.14. Let K be a �eld with an absolute value | · |. There exists a unique up to

isomorphism �eld K̂ which is an extension of K, with an absolute value on K̂ extending the
absolute value on K, such that K̂ is complete with respect to the absolute value.

Proof. This is just a sketch. Consider the set of Cauchy sequences in K. They can be
added, subtracted, and multiplied point-wise. Consider two sequences to be equivalent if
their di�erence approaches zero. Then set K̂ to be the set of equivalence classes of such
sequences. Note that nonzero classes in K̂ can now be divided point-wise, since a nonzero
Cauchy sequence is eventually bounded away from zero. K embeds into K̂ by taking an
element x to the constant sequence (x, x, x . . .). The abolute value on K can be extended to

K̂ by setting
|(an)| = lim

n→∞
|an|

We leave it as an exercise to verify that this makes sense and extends the absolute value.
The trickiest part is to verify that K̂ is complete with respect to this absolute value, which
requires some careful working through de�nitions, but nothing too di�cult.

If we take K = Q with the usual archimedean absolute value, then we get K̂ = R.

De�nition 6.1.15. The completion of Q with respect to the p-adic absolute value is denoted
Qp. Note that if p, q are distinct primes, then Qp and Qq are not isomorphic1, but this will
take some work to show (see Proposition 6.2.17).

6.1.3 Extending complete absolute values

Proposition 6.1.16. Let K be a complete nonarchimedean discretely valued �eld, and let
L/K be a �nite extension, with n = [L : K]. Then there is a unique absolute value on L
extending the absolute value on K, such that L is complete with respect to the absolue value.
Explicitly,

|x|L =
∣∣NL

K(x)
∣∣1/n
K

Furthermore, the valuation ring OL is the integral closure of OK in L.
1Obviously they are not isomoprhic as valued �elds since they have distinct residue �elds, but even more,

they are not isomorphic just as abstract �elds.
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Remark 6.1.17. By the above, if L/K is Galois and α, α′ ∈ L are Galois conjugates, then
|α|L = |α′|L, since α, α′ have the same norm.

Remark 6.1.18. Let K be a complete valued �eld as in the previous theorem. Since the
algebraic closure of K is the union over all �nite extensions of K, using the previous theorem,
we can extend the absolute value on K uniquely to the algebraic closure. (This can also be
done for the separable closure if that is desirable.) However, this does not tell us that the
algebraic closure is complete with respect to the extended value, and usually it is not. We
now have processes

K  K̂ K  Kalg

both with unique extensions of the absolute value. So we can do things like

K  K̂  K̂alg  ̂̂
Kalg  ̂̂

Kalg
alg

 · · ·

which in principle may never terminate, since after taking the completion, we may not have
an algebraically closed �eld, and after taking the algebraic closure, we may not have a
complete �eld.

For example, the algebraic closure of Qp is not complete with respect to to the extended
absolute value (assertion without proof here, not obvious). However, it is a theorem (cita-
tion?) that if you form the completion of Qalg

p with respect to its absolute value that the
resulting �eld is algebraically closed in addition to being complete. That is, starting with Q
with p-adic absolute value, the above process terminates after

Q Qp  Qalg
p  Q̂alg

p

since this completion is algebraically closed, taking the algebraic closure does nothing.

6.1.4 Hensel's lemma

Proposition 6.1.19 (Hensel's lemma, version 1). Let K be a complete nonarchimedean
discretely valued �eld, with associated local ring (OK ,m), and residue �eld k = OK/m. Let
f ∈ OK [x], and suppose there exist g1, h1 ∈ OK [x] with g1 monic and gcd(g1, h1) = 1 such
that

f = g1h1 ∈ k[x] (equivalently f ≡ g1h1 mod m)

Then there exist g, h ∈ OK [x] such that g is monic, g = g1, h = h1, and f = gh. That
is, factorizations of polynomials over k lift to factorizations over OK, provided there are no
common factors and one is monic.

Remark 6.1.20. This is hardly worth stating, but the �converse� of Hensel's lemma is
obvious. If f factors in in OK [x], then applying the quotient map OK → OK/m to the
coe�cients gives a factorization in k[x].

Remark 6.1.21. In particular, we care about the case K = Qp,OK = Zp,m = pZp, k = Fp.
In this case, Hensel's lemma says that if a polynomial f(x) ∈ Zp[x] has a factorization mod p
into relatively prime factors, then that factorization comes from a factorization in Zp.
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In particular, Z ⊂ Zp, and this is where Hensel's lemma is often applied, at least in
examples. Suppose we want to know if some polynomial equation f(x) = 0 with f ∈ Z[x]
has a solution in Qp or Zp. If we �nd a factorization of f with a monic, non-repeated linear
factor (x − a) where a ∈ Fp, then that factorization lifts to a factorization of f in Zp[x] so
there is a lift of α ∈ Zp so that α = a and f(α) = 0. The next corollary says this more
precisely.

Corollary 6.1.22 (Hensel's lemma, version 1, for Qp). Let f(x) ∈ Zp[x]. If f(x) ∈ Fp[x]
has a simple root a, that is, there exists a ∈ Fp such that f(a) = 0 and f ′(a) 6= 0, then there
exists a unique α ∈ Zp such that f(α) = 0 and α = a.

We also need another version of Hensel's lemma at one point later.

Proposition 6.1.23 (Hensel's lemma, version 2). Let K be a complete nonarchimedean
discretely valued �eld, with associated local ring (OK ,m). Let f(x) ∈ OK [x] be monic.
Suppose a ∈ OK such that

f ′(a) 6= 0 |f(a)| < |f ′(a)|2

Then there exists a unique α ∈ OK such that f(α) = 0 and

|a− α| ≤
∣∣∣∣ f(a)

f ′(a)

∣∣∣∣
Proposition 6.1.24. Let p be a prime.

1. If p ≥ 3, then: u ∈ Z×p is a square ⇐⇒ u ∈ F×p is a square.

2. If p = 2, then: u ∈ Z×2 is a square ⇐⇒ u ≡ 1 mod 8.

Proof. (1 =⇒ ) If u = α2 ∈ Zp then u = α2 ∈ F×p . (1 ⇐= ) Suppose u = a2 ∈ Fp. Consider
f(x) = x2 − u ∈ Zp[x]. Then

f(x) = x2 − u = x2 − a2 = (x− a)(x+ a)

Note that f ′(a) = 2a 6= 0 since p ≥ 3, so we can apply Corollary 6.1.22 to conclude that
there is a root α ∈ Zp of f , so u = α2. (2) Omitted.

6.2 Qp and Zp
De�nition 6.2.1. Let a, b ∈ Qp. We say a, b are congruent mod pn if

|a− b|p ≤ p−n

This extends the usual notion of congruence mod pn from Z.

Proposition 6.2.2 (Gouvea [5] 3.3.4). The ring Zp is a local ring with principal ideal pZp =
{x ∈ Qp : |x|p < 1}. Furthermore,

1. Q ∩ Zp = Z(p) =
{
a
b
∈ Q : p - b

}
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2. The inclusion Z ↪→ Zp has dense image. In particular, for x ∈ Zp, and n ≥ 1, there
exists α ∈ Z, 0 ≤ α ≤ pn − 1 such that |x− α| ≤ p−n, and such α is unique.

3. For any x ∈ Zp, there exists a Cauchy sequence αn converging to x, such that αn ∈
Z, 0 ≤ αn ≤ pn − 1, and for every n we have αn ≡ αn−1 mod pn−1. Furthermore, the
sequence (αn) with these properties is unique.

Proposition 6.2.3 (Hensel's lemma for Qp). Let f(x) ∈ Zp[x]. Suppose a ∈ Zp such that

f(a) ≡ 0 mod p f ′(a) 6≡ 0 mod p

Then there exists a unique b ∈ Zp such that

f(b) = 0 a ≡ b mod p

Remark 6.2.4. A p-adic integer x ∈ Zp has a unique expansion

x =
∞∑
k=0

akp
k = a0 + a1p+ a2p

2 + · · ·

where 0 ≤ ai ≤ p− 1. It is a unit (is in Z×p ) if and only if a0 6= 0.

Lemma 6.2.5. The inclusion Z ↪→ Zp has dense image. That is, if x ∈ Zp and n ≥ 1, there
exists α ∈ Z with 0 ≤ α ≤ pn − 1 such that |x− α|p ≤ p−n.

Proof. Using the expansion of above, write x = a0 + a1p + a2p
2 + · · · , then set α = a0 +

a1p + · · · + an−1p
n−1. Then it is clear that 0 ≤ α ≤ pn − 1 and using the nonarchimedean

triangle inequality we get

|x− α|p = |anpn + an+1p
n+1 + · · · |p ≤ max

i≥n
|aipi| = |pn| = p−n

6.2.1 p-adic units Z×p
Remark 6.2.6. From the previous unique description via expansions, it is clear that the
following sequence is exact.

0→ pnZp ↪→ Zp → Z/pnZ→ 0

where the right map is the �truncation� map

a0 + a1p+ a2p
2 + · · · 7→ a0 + a1p+ · · ·+ an−1p

n−1

Thus from the �rst isomorphism theorem we obtain

Zp/pnZp ∼= Z/pnZ
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More generally, for m ≤ n we have a truncation map pmZp → Z/pn−mZ with kernel pnZp
�tting into an exact sequence

0→ pnZp → pmZp → Z/pn−mZ→ 0

inducing an isomorphism
pmZp/pnZp ∼= Z/pn−mZ

The �rst version was just the case m = 0.

De�nition 6.2.7. Let U0 = Z×p and for n ≥ 1, set

Un = 1 + pnZp =
{

1 + anp
n + an+1p

n+1 + · · · ∈ Z×p
}

Note that Un is a subgroup of Z×p , and that there is a �ltration

Z×p ⊃ 1 + pZp ⊃ 1 + p2Zp ⊃ · · · U0 ⊃ U1 ⊃ U2 ⊃ · · ·

Lemma 6.2.8. There are exact sequences

1 1 + pZp Z×p (Z/pZ)× 1

1 1 + pnZp Z×p (Z/pnZ)× 1

1 1 + pn+1Zp 1 + pnZp Z/pZ 1

mod p

mod pn

1+pnx7→x mod p

2 for n ≥ 1 which induce isomorphisms

U0/U1
∼= (Z/pZ)× U0/Un ∼= (Z/pnZ)× Un/Un+1

∼= Z/pZ

Proof. Exactness is obvious by inspection, and the isomorphisms are immediate from the
�rst isomorphism theorem.

De�nition 6.2.9. For x ∈ Qp, the p-adic exponential function is

exp(x) =
∞∑
n=0

xn

n!

and the p-adic logarithm is

log(1 + x) =
∞∑
n=1

(−1)n+1x
n

n

Note that at this point, these are both formal power series, but the next lemma determines
their respective domains of convergence.

2The �rst sequence is redudant, as it is a special case of the second, but we include it anyway.
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Lemma 6.2.10. Let f(x) =
∑∞

n=0 anx
n ∈ Qp[[x]]. De�ne

rf =
(
lim sup |an|1/np

)−1

Then f(x) converges for |x|p < rf and diverges for |x|p > rf .

Proof. Proposition 4.3.1 of Gouvea [5]. Gouvea also gives a criterion for convergence on the
�boundary� |x|p = rf which is not included here.

Lemma 6.2.11. The p-adic logarithm and exponential have the following properties.

1. For f(x) = log(1 + x), rf = 1, so the domain of log(1 + x) is pZp and the domain of
log(x) is 1 + pZp.

2. For f(x) = exp(x), rf = p−1/(p−1), so the domain of exp(x) is{
pZp p ≥ 3

4Z2 p = 2

3. Whenever there is convergence, the following identities hold.

log(ab) = log a+ log b

exp(a+ b) = (exp a)(exp b)

exp log a = a

log exp a = a

Proof. Section 4.5 of Gouvea [5]. In particular, Lemma 4.5.1, Proposition 4.5.3, Lemma
4.5.5, Proposition 4.5.7, Proposition 4.5.8

Proposition 6.2.12. If p ≥ 3, then we have isomorphisms

Zp ∼= pZp 1 + pZp = U1

exp

∼=
log

In the case p = 2 we have isomorphisms

Z2
∼= 4Z2 1 + 4Z2 = U2

exp

∼=
log

Proof. The isomorphisms given by exp and log follow from the previous lemma 6.2.11. The
isomorphism Zp ∼= pZp is given by x 7→ px, and similarly Z2

∼= 4Z2 via x 7→ 4x. See
Proposition 4.5.9 of Gouvea [5] for more on this.

Remark 6.2.13. Let p be odd. Under the isomorphism log : 1 + pZp → pZp, the subgroup
Un = 1 + pnZp ⊂ 1 + pZp on the left side has image pnZp on the right side, so the p-adic
logarithm gives an isomorphism

Un = 1 + pnZp ∼= pnZp

195



Proposition 6.2.14 (Structure of Z×p ).

Z×p ∼=

{
U1 × (Z/pZ)× ∼= Zp × (Z/pZ)× p ≥ 3

U2 × (Z/4Z)× ∼= Z2 × {±1} p = 2

Proof. In light of the isomorphisms from Proposition 6.2.12, the �rst and second exact
sequences of Lemma 6.2.8 give exact sequences below.

0 Zp ∼= U1 Z×p (Z/pZ)× 0 p ≥ 3

0 Z2
∼= U2 Z×2 (Z/4Z)× ∼= {±1} 0

We claim that these are split exact. For the p = 2 sequence, simply use the embedding

{±1} ↪→ Z× ↪→ Z×2

Splitting of the other sequence is more involved, so we omit some details. Basically, it su�ces
to �nd (p− 1)st roots of unity in Z×p , since (Z/pZ)× is cyclic of order p− 1.

Consider f(x) = xp−1 − 1 ∈ Z[x] ⊂ Zp[x]. Over Fp, this splits completely into p − 1
distinct linear factors, and the derivative is f ′(x) = (p− 1)xp−2 6= 0, so by Hensel's lemma,
all of the simple roots lift to roots in Zp. Thus Zp contains all (p− 1)st roots of unity.

See Corollary 4.5.10 of Gouvea [5] for some more details. Once the sequences split, we
obtain exactly the claimed isomorphisms.

Corollary 6.2.15 (Structure of Q×p ).

Q×p ∼= Z× Z×p ∼=

{
Z× Zp × (Z/pZ)× p ≥ 3

Z× Z2 × (Z/4Z)× p = 2

Proof. Any element of Q×p can be written uniquely as pnu where u ∈ Z×p , so we get an
isomorphism

Q×p → Z× Z×p pnu 7→ (n, u)

The rest is immediate from the structure of Z×p .

6.2.2 Completions of Q are non-isomorphic

Remark 6.2.16. From the structure of Q×p given in Corollary 6.2.15, and the fact that Z
and Zp are torsion-free, the torsion subgroup of Q2 is (Z/4Z)× and for p ≥ 3 the torsion
subgroup of Q×p is (Z/pZ)×. That is to say, the only roots of unity in Q2 are ±1, and for
p ≥ 3 the only roots of unity in Q×p are (p− 1)st roots of unity.

Proposition 6.2.17. The �elds R,Q2,Q3,Q5, . . . are all pairwise non-isomorphic (as ab-
stract �elds).

Proof. According to the following table comparing the torsion subgroup of the multiplicative
group, none of R,Q2,Q3 is isomorphic to Q5,Q5, . . . and none of Q5,Q7, . . . are isomorphic
to each other.
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K Torsion in K×

R Z/2Z ∼= {±1}
Q2 Z/2Z ∼= {±1}
Q3 Z/2Z ∼= {±1}
Qp, p ≥ 5 Z/(p− 1)Z

So it remains to check that R,Q2,Q3 are pairwise non-isomorphic. For this, we consider the
invariant K×/K×2.

K K×/K×2 |K×/K×2|
R R/R>0

∼= Z/2Z 2
Q2 (Z× Z2 × Z/2Z)/2 ∼= (Z/2Z)3 8
Q3 (Z× Z3 × Z/2Z)/2 ∼= (Z/2Z)2 4

Note that Z3/2 = 0 because 2 is a unit in Z3. Since these are all distinct, none of these are
isomorphic either.

Remark 6.2.18. Let p be an odd prime. One interesting consequence of |Q×p /Q×2
p | = 4 is

that Qp has exactly three quadratic �eld extensions (in a �xed algebraic closure), because
any quadratice �eld extension is formed by adjoining a square root of a non-square.

6.2.3 The group of units (Z/pnZ)× is cyclic

Proposition 6.2.19. Let p be an odd3 prime and n ∈ Z≥1. The group of units (Z/pnZ)× is
cyclic.

Proof. By Lemma 6.2.8,

(Z/pnZ)× ∼= Z×p /Un = Z×p /(1 + pnZp)

Using Proposition 6.2.14,
Z×p ∼= U1 × (Z/pZ)×

Since Un ⊂ U1, in the quotient Z×p /Un ∼= (U1 × (Z/pZ)×)/Un the Un lives entirely in the U1

component, so
Z×p /Un ∼= (U1 × (Z/pZ)×)/Un ∼= (U1/Un)× (Z/pZ)×

By Remark 6.2.13, Un ∼= pnZp, so

U1/Un =
1 + pZp
1 + pnZp

∼=
pZp
pnZp

∼= Z/pn−1Z

The �nal isomorphism comes from Remark 6.2.6. Putting this together, we obtain

(Z/pnZ)× ∼= U1/Un × (Z/pZ)× ∼= Z/pn−1Z× (Z/pZ)×

Since (Z/pZ)× is cyclic of order p− 1, the product on the right is a product of cyclic groups
of relatively prime orders, so it is cyclic.

3This does fail for p = 2 for at least some values of n. As a counterexample, (Z/8Z)× is order four, but
not cyclic, since 32 ≡ 52 ≡ 72 ≡ 1 mod 8.
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6.3 Rami�cation

De�nition 6.3.1. Let K be a complete nonarchimedean discretely valued �eld, and L/K a
�nite extension. Let kK be the associated residue �eld of K and kL the associated residue
�eld of L. Note that OK ⊂ OL and mK ⊂ mL, hence

kK ↪→ kL

The residual degree is
f(L|K) = fLK = [kK : kL]

De�nition 6.3.2. Let K be a complete nonarchimedean discretely valued �eld, and L/K a
�nite extension with d = [L : K]. Let vK : K× → Z be a normalized discrete valuation. Let
vL : L× → R be the extension of vK , and the we know that

im vL ⊂
1

d
Z

so vL is also discrete. The rami�cation degree is

e(L|K) = eLK = eL/K = [vL(L×) : vK(K×)]

That is, if πK is a uniformizer for K and πL is a uniformizer for L, then

(πK) =
(
π
e(L|K)
L

)
as ideals of OL.

De�nition 6.3.3. Let L,K, eL/K , fL/K be as above. If eL/K = 1, then L/K is unrami�ed.
if fL/K = 1, then L/K is totally rami�ed.

Proposition 6.3.4. Let K be a complete nonarchimedean discretely valued �eld, and let
L/K be a �nite separable extension, with extended absolute value, such that the valuation on
L is also discrete. Then OL is a free OK-module of rank [L : K].

Proposition 6.3.5. Let K be a complete nonarchimedean discretely valued �eld, and L/K
a �nite extension, with extended absolute value. Assume that the residue �elds kK , kL are
perfect. Then

[L : K] = eL/KfL/K

Proof. Let d = [L : K]. By Proposition 6.3.4, OL ∼= OdK as an OK-module. Let πK , πL be
uniformizers, that is,

(πK) = πKOK = mK (πL) = πLOL = mL

Then
OL/πKOL ∼= OdK/πkOdK ∼= (OK/πKOK)d ∼= (kK)d
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Recall that by de�nition of e = eL/K , (πK) = (πeL). Consider the �ltration

OL ⊃ πLOL ⊃ π2
LOL ⊃ · · · ⊃ πeLOL = πkOL

(πL) (π2
L) (πeL) = (πk)

Recall that by de�nition of f = fL/K , we have kL ∼= kfK . At each step of the �ltration, we
have

πiLOK/πi+1
L OL ∼= OL/πLOL ∼= kL ∼= kfK

Since there are e steps in the �ltration, and each step has successive quotient kfk , in total we
have

OL/πKOL ∼=
(
kfK

)e
= kefK

Since this quotient is also kdK , we get d = ef as desired.

Proposition 6.3.6. The indices e, f are �multiplicative in towers." More precisely, let K be
a complete nonarchimedean discretely valued �eld, and let K ⊂ L ⊂ M be a tower of �nite
extensions. Then

eMK = eML e
L
K fMK = fML f

L
K

Proof. For f , this just follows from the tower law for �eld extensions.

fMK = [kM : kK ] = [kM : kL][kL : kK ] = fML f
L
M

The result for e could probably be proved directly, but it also follows using the tower law
for f , the tower law for K ⊂ L ⊂M , and the previous result [L : K] = eLKf

L
K .

eMK =
[M : K]

fMK
=

[M : L][L : K]

fML f
L
K

=

(
[M : L]

fML

)(
[L : K]

fLK

)
= eML e

L
K

Example 6.3.7. Let K = Q5 and L = Q5(
√

2), so [L : K] = 2. Normalize the discrete
valuation on K so that vK(K×) = Z and vL(L×) = 1

e
Z. Note that

NL
K(
√

2) =
√

2(−
√

2) = 2

so
|
√

2|L = |2|1/2K = 1

so
√

2 ∈ OL. Thus there is an element of the residue �eld kL = OL/mL which is a root of
x2−2. Since x2−2 is irreducible over kK ∼= F5, the extension kL/kK has degree greater than
1, that is, f > 1. Since ef = 2, this forces f = 2, e = 1. Hence Q5(

√
2) is totally unrami�ed

over Q5.

Example 6.3.8. Let K = Q5 and L = Q5(
√

5), so [L : K] = 2. Normalize the discrete
valuation on K so that vK(K×) = Z and vL(L×) = 1

e
Z. Then

1 = vL(5) = 2vL(
√

5) =⇒ vL(
√

5) =
1

2

Thus e ≥ 2, so f = 1, e = 2, and
√

5 is a uniformizer.

199



Example 6.3.9. Let K = Q3 and L = Q3(
√

2, ζ) where ζ is a primitive 3rd root of unity.
Note that [L : K] = 4.

Q3(
√

2, ζ)

Q3(ζ) Q3(
√

2)

Q3

2 2

22

Note that ζ is a root of x2 + x+ 1 over Q3. By a similar argument as in Example 6.3.7,

e
Q3(
√

2)
Q3

= 1 f
Q3(
√

2)
Q3

= 2

Regarding Q3(ζ), we observe that

x2 + x+ 1 = (x− ζ)(x− ζ2) =⇒ 3 = (ζ − 1)(ζ2 − 1)

=⇒ vQ3(ζ)(3) = 1 = vL(ζ − 1) + vL(ζ2 − 1)

Since ζ − 1, ζ2 − 1 are Galois conjugates, they have equal valuation. Hence

vL(ζ − 1) =
1

2
so

eQ3(ζ)Q3 = 2 f
Q3(ζ)
Q3

= 1

Returning to our original diagram, we can write in the rami�cation and residual degrees
we computed. Since all the extensions are degree 2, we can also deduce rami�cation and
residual degrees for the upper extensions and the total extension L/K by multiplicativity in
towers.

Q3(
√

2, ζ)

Q3(ζ) Q3(
√

2)

Q3

e=2, f=1 e=1, f=2

e=2, f=1e=1, f=2

By multiplicativity in towers,
eLK = fLK = 2

6.4 Galois-type correspondence for unrami�ed extensions

Proposition 6.4.1. Let K be a complete nonarchimedean discretely valued �eld, with perfect
residue �eld kK. For a �nite unrami�ed extension L/K, by the primitive element theorem
we can write L as L = K(α) for some α ∈ L. De�ne

kL = kK(α)
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This gives an inclusion-preserving bijection

Ψ : {finite unramified extensions of K} → {finite extensions of kK}
L = K(α) 7→ kL = kK(α)

Furthermore, if L/K and L′/K are �nite unrami�ed extensions, there is an isomorphism

HomK(L,L′)→ HomkK (kL, kL′)

φ 7→ φ|OL mod mK

That is, the bijection Ψ is actually an equivalence of categories.

Proof. Theorem 7.50 of Milne [7].

Proposition 6.4.2. Let K be as above, and let L/K be a �nite unrami�ed extension. Then

Aut(L/K) ∼= Aut(kL/kK)

Thus L/K is Galois if and only if kL/kK is Galois and in this case,

Gal(L/K) ∼= Gal(kL/kK)

Proof. A �nite extension L/K is Galois if and only if K is the �xed �eld of Aut(L/K). By
the equivalence of categories above, Aut(L/K) ∼= Aut(kL/kk), and K is the �xed �eld of
Aut(L/K) if and only kK is the �xed �eld of Aut(kL/kK).

Example 6.4.3. Let p be a prime, and let K be a complete local �eld with residue �eld
kK = Fp. 4 Since Fp has a unique �nite extension of degree n for each n ∈ Z≥1, K has
a unique unrami�ed extension Ln of degree n for each n ∈ Z≥1. Concretely in the case
K = Qp, we have

Ln = Qp(µpn−1)

where µpn−1 is the group of pn − 1 roots of unity. To point out the blatantly obvious, Ln
corresponds to the extension Fpn/Fp, and

Gal(Ln/K) ∼= Gal(Fpn/Fp) ∼= Z/nZ

Proposition 6.4.4. Let K be a complete nonarchimedean discretely valued �eld, with per-
fect residue �eld kK, and let L/K be a �nite separable extension. There exists a unique
subextension Kun such that L/Kun is totally rami�ed and Kun/K is unrami�ed.

L

Kun

K

f=1 totally ramified

e=1 unramified

4For concreteness, take K = Qp or K = Fpn((t)), the �eld of formal power series. Actually, there is a
classi�cation theorem to say that all such nonarchimedean �elds are a �nite extension of one of these two
types.
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Kun is called the maximal unrami�ed extension of K in L. If L/K is in�nite, we
may still �nd a maximal unrami�ed extension Kun/L, in the sense that for any unrami�ed
extesion E/K, E ⊂ K, although we can no longer guarantee that L/Kun is totally rami�ed
in this case.

Proof. First, assume L/K is �nite. Since kL/kK is a �nite extension, by the Proposition 6.4.1,
there exists a unique unrami�ed extension Kun/K such that kL ∼= kKun . By multiplicativity
in towers, fLKun = 1.

Now suppose L/K is in�nite. Then we construct Kun as the compositum of all �nite
unrami�ed extensions E/K, noting that the compositum of unrami�ed extensions is unram-
i�ed. Then by construction, Kun contains all unrami�ed extensions of K.

Example 6.4.5. Let K = Q3, L = Q3(
√

2, ζ) where ζ is a primitive 3rd root of unity. We
considered this example previously in Example 6.3.9, and saw that Q3(

√
2) is the maximal

unrami�ed subextension.

De�nition 6.4.6. Let K be a complete nonarchimedean local �eld with perfect residue
�eld kK

5, and �x a separable closure Ksep. Then by Proposition 6.4.4, there is a maximal
unrami�ed extesion Kun ⊂ Ksep, called the maximal unrami�ed extension of K. By
construction an intermediate extesion K ⊂ E ⊂ Ksep is unrami�ed if and only if E ⊂ Kun.

6.5 Assorted exercises from Gouvea [5]

Proposition 6.5.1 (Exercise 113 of Gouvea [5]). Let p be a prime and m an integer such
that gcd(m, p) = 1. Then gcd(m, p − 1) > 1 if and only if there exists α ∈ Z such that
αm ≡ 1 mod p and α 6≡ 1 mod p. Furthermore, for any such α, the least integer m such that
αm ≡ 1 mod p is a divisor of p− 1.

Proof. ( =⇒ ) Note that F×p ∼= Z/(p − 1)Z so if d = gcd(m, p − 1) > 1, then F×p has a
subgroup of order d. Let α ∈ Z be a representative of the generator of the subgroup of order
d, so that αd ≡ 1 mod p. Then

αm ≡ (αd)m/d ≡ 1m/d ≡ 1 mod p

and α 6≡ 1 mod p since α generates a nontrivial subgroup.
(⇐= ) Suppose α exists. Then α generates a nontrivial proper subgroup of F×p of order

dividing m, so that order divies m and p− 1, hence gcd(m, p− 1) > 1.
Regarding the �furthermore� statement, the least m such that αm ≡ 1 mod p is the order

of the subgroup of F×p generated by α so it divides the order of F×p which is p− 1.

Proposition 6.5.2 (Exercise 126 of Gouvea [5]). Let p be an odd prime and n ∈ {0, 1, . . . , p− 2}.
Then ∑

x∈Fp

xn = 0

5Is this necessary? Milne [8] includes it in Corollary 7.52, so I've kept it.
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Proof. For n = 0 this is clear, assuming we take 00 = 1. For n 6= 0, we can rewrite the sum
as a sum over F×p , and it becomes a geometric series. Let α be a generator of F×p , so that
αp−1 = 1.

∑
x∈F×p

xn =

p−1∑
k=1

(αk)n =

p−1∑
k=1

(αn)k = αn
(

1− (αn)p−1

1− αn

)
= αn

(
0

1− αn

)
= 0

Proposition 6.5.3 (Exercise 161 of Gouvea [5]). If p is an odd prime, then logp(x) = 0 if
and only if x = 1. If p = 2, then logp(x) = 0 if and only if x = ±1.

Proof. Let p be an odd prime. First, it is clear that logp(1). Conversely, for y ∈ Zp,

logp(1 + py) =
∞∑
n=1

(−1)n+1p
n

n
yn

(This converges for y ∈ Zp.) By Strassman's theorem, this has at most N zeroes where
N = 1 because

|a1|
1

p
> |a2|, |a3|, . . .

using the fact that p > 2. So 1 is the only zero of logp. Now consider the case p = 2. It is
clear that log2(1) = 0. Also

2 log2(−1) = log2((−1)2) = log2(1) = 0 =⇒ log2(−1) = 0

Consider the �same� power series as above

log2(1 + 2y) =
2

1
y − 22

2
y2 +

23

3
y3 − · · ·

Applying Strassman's theorem again, we get N = 2 so there are at most 2 zeroes of this, so
±1 are all of the zeroes.

6.6 A concrete failure of the Hasse principle

The Hasse principle asserts that �global� information is related to �local� information, in the
sense that existence of solutions in Q to some equation are related to existence of solutions
in all local �eld completions of Q, namely Qp for all p and R. This is exactly true in the case
of quadratic forms - the Hass-Minkowsi theorem says that a quadratic form has a solution
in Q if and only if there is a solution in every Qp and a solution in R. However, it fails for
higher degree forms, as given by the following example.

Lemma 6.6.1. Let p be an odd prime, and let a, b be quadratic non-residues mod p. Then
ab is a quadratic residue mod p.
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Proof. If a, b are both non-residues, they both represent the same nontrivial class in F×p /F×2
p
∼=

Z/2Z (this isomorphism uses the fact that p−1 is even). Then ab represents the trivial class,
that is, ab ∈ F×2

p .

Proposition 6.6.2. The equation

(x2 − 2)(x2 − 17)(x2 − 34) = 0

has a root in Qp for all primes p and in R, but no root in Q.

Proof. It is clear that there is no root in Q, since 2, 17, and 34 are not squares, and it is
clear that there are roots in R. Since 17 ≡ 1 mod 8, by Proposition 6.1.24, there is a root of
x2 − 17 in Q2.

Now let p be an odd prime. It su�ces to show that at least one of 2, 17, 34 is a square in
Qp. By Proposition 6.1.24, if u ∈ Q×p is a quadratic residue mod p, then it is a square in Qp.
If either 2 or 17 is a quadratic residue mod p, we are done. If both are non-residues, then
by Lemma 6.6.1, then 34 = (2)(17) is a quadratic residue, so it is a square in Qp.

Remark 6.6.3. The proof of the previous proposition actually yields an in�nite family of
equations for which the Hasse principle fails. For any prime of the form p = 8k+ 1, and the
proof above shows that

(x2 − 2)(x2 − p)(x2 − 2p) = 0

has a solution in every Qp and in R but no solutions in Q.
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